ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the results of our search for the progenitor candidate of SN 2013dk, a Type Ic supernova (SN) that exploded in the Antennae Galaxy system. We compare pre-explosion Hubble Space Telescope (HST) archival images with SN images obtained using a daptive optics at the ESO Very Large Telescope. We isolate the SN position to within 3 sigma uncertainty radius of 0.02, and show that there is no detectable point source in any of the HST filter images within the error circle. We set an upper limit to the absolute magnitude of the progenitor to be M_F555W > -5.7, which does not allow Wolf-Rayet (WR) star progenitors to be ruled out. A bright source appears 0.17 away, which is either a single bright supergiant or compact cluster, given its absolute magnitude of M_F555W=-9.02 +- 0.28 extended wings and complex environment. However, even if this is a cluster, the spatial displacement of SN 2013dk means that its membership is not assured. The strongest statement we can make is that in the immediate environment of SN 2013dk (within 10 pc or so) we find no clear evidence of either a point source coincident with the SN or a young stellar cluster that could host a massive WR progenitor.
124 - Nancy Elias-Rosa 2011
We present observations of SN2009hd in the nearby galaxy M66. This SN is one of the closest to us in recent years but heavily obscured by dust, rendering it unusually faint in the optical, given its proximity. We find that the observed properties of SN2009hd support its classification as a possible Type II-L SN, a relatively rare subclass of CC-SNe. High-precision relative astrometry has been employed to attempt to identify a SN progenitor candidate, based on a pixel-by-pixel comparison between HST F555W and F814W images of the SN site prior to explosion and at late times. A progenitor candidate is identified in the F814W images only; this object is undetected in F555W. Significant uncertainty exists in the astrometry, such that we cannot definitively identify this object as the SN progenitor. Via insertion of artificial stars into the pre-SN HST images, we are able to constrain the progenitors properties to those of a possible supergiant, with M(F555W)0>-7.6 mag and (V-I) 0>0.99 mag. The magnitude and color limits are consistent with a luminous RSG; however, they also allow for the possibility that the star could have been more yellow than red. From a comparison with theoretical massive-star evolutionary tracks, which include rotation and pulsationally enhanced mass loss, we can place a conservative upper limit on the initial mass for the progenitor of <20 M_sun. If the actual mass of the progenitor is near the upper range allowed by our derived mass limit, then it would be consistent with that for the identified progenitors of the SNII-L 2009kr and the high-luminosity SNII-P 2008cn. The progenitors of these three SNe may possibly bridge the gap between lower-mass RSG that explode as SNeII-P and LBV, or more extreme RSG, from which the more exotic SNeII-n may arise. Very late-time imaging of the SN2009hd site may provide us with more clues regarding the true nature of its progenitor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا