ترغب بنشر مسار تعليمي؟ اضغط هنا

121 - Zhiyuan Gu , Nan Zhang , Quan Lyu 2015
Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained tremendous research attention. While the PT symmetric absorber has been observed in microwave metamaterials, the experimental demonstration of PT symmetric laser is still absent. Here we experimentally study PT-symmetric laser absorber in stripe waveguide. Using the concept of PT symmetry to exploit the light amplification and absorption, PT-symmetric laser absorbers have been successfully obtained. Different from the single-mode PT symmetric lasers, the PT-symmetric stripe lasers have been experimentally confirmed by comparing the relative wavelength positions and mode spacing under different pumping conditions. When the waveguide is half pumped, the mode spacing is doubled and the lasing wavelengths shift to the center of every two initial lasing modes. All these observations are consistent with the theoretical predictions and confirm the PT-symmetry breaking well.
106 - Shuai Liu , Zhiyuan Gu , Nan Zhang 2015
Coupling light into microdisk plays a key role in a number of applications such as resonant filters and optical sensors. While several approaches have successfully coupled light into microdisk efficiently, most of them suffer from the ultrahigh sensi tivity to the environmental vibration. Here we demonstrate a robust mechanism, which is termed as end-fire injection. By connecting an input waveguide to a circular microdisk directly, the mechanism shows that light can be efficiently coupled into optical microcavity. The coupling efficiency can be as high as 0.75 when the input signals are on resonances. Our numerical results reveal that the high coupling efficiency is attributed to the constructive interference between the whispering gallery modes and the input signals. We have also shown that the end-fire injection can be further extended to the long-lived resonances with low refractive index such as n = 1.45. We believe our results will shed light on the applications of optical microcavities.
141 - Meng Li , Nan Zhang , Kaiyang Wang 2015
Recently, on-chip single-mode laser emission has attracted considerable research attention due to its wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect o r inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism for single-mode operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the frequency detuning. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser.
X-ray photons coming from an X-ray point source not only arrive at the detector directly, but also can be strongly forward-scattered by the interstellar dust along the line of sight (LOS), leading to a detectable diffuse halo around the X-ray point s ource. The geometry of small angle X-ray scattering is straightforward, namely, the scattered photons travel longer paths and thus arrive later than the unscattered ones; thus the delay time of X-ray scattered halo photons can reveal information of the distances of the interstellar dust and the point source. Here we present a study of the X-ray scattered around IGR J17544-2619, which is one of the so-called supergiant fast X-ray transients. IGR J17544-2619 underwent a striking outburst when observed with Chandra on 2004 July 3, providing a near delta-function lightcurve. We find that the X-ray scattered halo around IGR J17544-2619 is produced by two interstellar dust clouds along the LOS. The one which is closer to the observer gives the X-ray scattered at larger observational angles; whereas the farther one, which is in the vicinity of the point source, explains the halo with a smaller angular size. By comparing the observational angle of the scattered halo photons with that predicted by different dust grain models, we are able to determine the normalized dust distance. With the delay times of the scattered halo photons, we can determine the point source distance, given a dust grain model. Alternatively we can discriminate between the dust grain models, given the point source distance.
We report the discovery of an anti-correlation between the soft and the hard X-ray lightcurves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, an d that this process happens within a few seconds. Stacking the Aql X-1 lightcurves of type-I bursts, we find a shortage in the 40--50 keV band, delayed by 4.5$pm$1.4 s with respect to the soft X-rays. The photospheric radius expansion (PRE) bursts are different in that neither a shortage nor an excess shows up in the hard X-ray lightcurve.
We use publicly available XMM-Newton data to systematically compare the hard X-ray photon indices, $Gamma_{rm 2-10 keV}$ and the iron K$alpha$ emission lines of narrow-line (NL) and broad-line Seyfert 1 (BLS1) galaxies. We compile a flux-limited ($f_ {rm 2-10 keV} geq 1 times 10^{-12}$ erg s$^{-1}$ cm$^{-2}$) sample including 114 radio-quiet objects, with the 2-10 keV luminosity ranging from 10$^{41}$ to 10$^{45}$ erg s$^{-1}$. Our main results are: 1) NLS1s and BLS1s show similar luminosity distributions; 2) The weighted mean of $Gamma_{rm 2-10 keV}$ of NLS1s, BLS1s and the total sample is $2.04pm0.04$, $1.74pm0.02$, $1.84pm0.02$, respectively; a significant anti-correlation between ga and FWHMH$beta$ suggests that $Gamma_{rm 2-10 keV} > 2.0$ may be taken to indicate X-ray luminous NLS1 type; 3) The 6.4 keV narrow iron K$alpha$ lines from NLS1s are generally weaker than that from BLS1s; this would indicate a smaller covering factor of the dusty tori in NLS1s, if the line emission originates from the inner boundary region of the dusty torus in an AGN; 4) all the broadened iron K$alpha$ lines with intrinsic width $sigma>0.5$ keV correspond to FWHMhb $leq 4000 ~kms$.
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. T he intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects which have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. Applying this relation, the BH mass of RE J1034+396 is found to be $4^{+3}_{-2} times 10^6$ $M_{odot}$. The high end of the mass range follows the relationship between the 2$f_0$ frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant $C= 2.37 M_odot$ Hz$^{-1}$ from 21 reverberation-mapped AGN. As suggested by Gierlinski et al., $M_{rm BH}=C/C_{rm M}$, where $C_{rm M}$ is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ULXs and AGN, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the Ultra-Luminous X-ray source M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems (abridged).
A two-components model for Broad Line Region (BLR) of Active Galactic Nuclei (AGN) has been suggested for many years but not widely accepted (e.g., Hu et al. 2008; Sulentic et al. 2000; Brotherton et al. 1996; Mason et al. 1996). This model indicates that the broad line can be described with superposition of two Gaussian components (Very Broad Gaussian Component (VBGC) and InterMediate Gaussian Component (IMGC)) which are from two physically distinct regions; i.e., Very Broad Line Region (VBLR) and InterMediate Line Region (IMLR). We select a SDSS sample to further confirm this model and give detailed analysis to the geometry, density and evolution of these two regions. Micro-lensing result of BLR in J1131-1231 and some unexplained phenomena in Reverberation Mapping (RM) experiment provide supportive evidence for this model. Our results indicate that the radius obtained from the emission line RM normally corresponds to the radius of the VBLR, and the existence of the IMGC may affect the measurement of the black hole masses in AGNs. The deviation of NLS1s from the M-sigma relation and the Type II AGN fraction as a function of luminosity can be explained in this model in a coherent way. The evolution of the two emission regions may be related to the evolutionary stages of the broad line regions of AGNs from NLS1s to BLS1s. Based on the results presented here, a unified picture of hierarchical evolution of black hole, dust torus and galaxy is proposed.
367 - Wei Ming Zhang 2009
We have studied the X-ray nuclear activity of 187 nearby (distance < 15 Mpc) galaxies observed with Chandra/ACIS. We found that 86 of them have a point-like X-ray core, consistent with an accreting black hole (BH). We argue that the majority of them are nuclear BHs, rather than X-ray binaries. The fraction of galaxies with an X-ray detected nuclear BH is higher (~60 per cent) for ellipticals and early-type spirals (E to Sb), and lower (~30 per cent) for late-type spirals (Sc to Sm). There is no preferential association of X-ray cores with a large-scale bar; in fact, strongly barred galaxies appear to have slightly lower detection fraction and luminosity for their nuclear X-ray sources, compared with non-barred or weakly barred galaxies of similar Hubble types. The cumulative luminosity distribution of the nuclear sources in the 0.3-8 keV band is a power-law with slope ~-0.5, from ~2 x 10^{38} erg/s to ~10^{42} erg/s. The Eddington ratio is lower for ellipticals (L_{X}/L_{Edd} ~ 10^{-8}) and higher for late-type spirals (up to L_{X}/L_{Edd} ~ 10^{-4}), but in all cases, the accretion rate is low enough to be in the radiatively-inefficient regime. The intrinsic NH is generally low, especially for the less luminous sources: there appear to be no Type-2 nuclear BHs at luminosities <~ 10^{39} erg/s. The lack of a dusty torus or of other sources of intrinsic absorption (e.g., an optically-thick disk wind) may be directly related to the lack of a standard accretion disk around those faint nuclear BHs. The fraction of obscured sources increases with the nuclear BH luminosity: 2/3 of the sources with L_{X} > 10^{40} erg/s have a fitted NH > 10^{22} cm^{-2}. This is contrary to the declining trend of the obscured fraction with increasing luminosities, observed in more luminous AGN and quasars.
Using a cross-correlation method, we study the X-ray halo of Cyg X-3. Two components of dust distributions are needed to explain the time lags derived by the cross-correlation method. Assuming the distance as 1.7 kpc for Cygnus OB2 association (a ric hest OB association in the local Galaxy) and another uniform dust distribution, we get a distance of $7.2^{+0.3}_{-0.5}$ kpc (68$%$ confidence level) for Cyg X-3. When using the distance estimation of Cygnus OB2 as 1.38 kpc or 1.82 kpc, the inferred distance for Cyg X-3 is $3.4^{+0.2}_{-0.2}$ kpc or $9.3^{+0.6}_{-0.4}$ kpc respectively. The distance estimation uncertainty of Cyg X-3 is mainly related to the distance of the Cygnus OB2, which may be improved in the future with high precision astrometric measurements. The advantage of this method is that the result depends weakly on the photon energy, dust grain radius, scattering cross-section and so on.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا