ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - Daniel Suchet 2015
We study theoretically, numerically, and experimentally the relaxation of a collisionless gas in a quadrupole trap after a momentum kick. The non-separability of the potential enables a quasi thermalization of the single particle distribution functio n even in the absence of interactions. Suprinsingly, the dynamics features an effective decoupling between the strong trapping axis and the weak trapping plane. The energy delivered during the kick is redistributed according to the symmetries of the system and satisfies the Virial theorem, allowing for the prediction of the final temperatures. We show that this behaviour is formally equivalent to the relaxation of massless relativistic Weyl fermions after a sudden displacement from the center of a harmonic trap.
Continuous-time random walks are generalisations of random walks frequently used to account for the consistent observations that many molecules in living cells undergo anomalous diffusion, i.e. subdiffusion. Here, we describe the subdiffusive continu ous-time random walk using age-structured partial differential equations with age renewal upon each walker jump, where the age of a walker is the time elapsed since its last jump. In the spatially-homogeneous (zero-dimensional) case, we follow the evolution in time of the age distribution. An approach inspired by relative entropy techniques allows us to obtain quantitative explicit rates for the convergence of the age distribution to a self-similar profile, which corresponds to convergence to a stationnary profile for the rescaled variables. An important difficulty arises from the fact that the equation in self-similar variables is not autonomous and we do not have a specific analyitcal solution. Therefore, in order to quantify the latter convergence, we estimate attraction to a time-dependent pseudo-equilibrium, which in turn converges to the stationnary profile.
173 - C. N. Thomas 2014
The CAMbridge Emission Line Surveyor (CAMELS) is a pathfinder program to demonstrate on-chip spectrometry at millimetre wavelengths. CAMELS will observe at frequencies from 103-114.7 GHz, providing 512 channels with a spectral resolution of R = 3000. In this paper we describe the science goals of CAMELS, the current system level design for the instrument and the work we are doing on the detailed designs of the individual components. In addition, we will discuss our efforts to understand the impact that the design and calibration of the filter bank on astronomical performance. The shape of the filter channels, the degree of overlap and the nature of the noise all effect how well the parameters of a spectral line can be recovered. We have developed a new and rigorous method for analysing performance, based on the concept of Fisher information. This can in be turn coupled to a detailed model of the science case, allowing design trade-offs to be properly investigated.
84 - Laura Chomiuk 2013
We report the discovery of a candidate stellar-mass black hole in the Milky Way globular cluster M62. We detected the black hole candidate, which we term M62-VLA1, in the core of the cluster using deep radio continuum imaging from the Karl G. Jansky Very Large Array. M62-VLA1 is a faint source, with a flux density of 18.7 +/- 1.9 microJy at 6.2 GHz and a flat radio spectrum (alpha=-0.24 +/- 0.42, for S_nu = nu^alpha). M62 is the second Milky Way cluster with a candidate stellar-mass black hole; unlike the two candidate black holes previously found in the cluster M22, M62-VLA1 is associated with a Chandra X-ray source, supporting its identification as a black hole X-ray binary. Measurements of its radio and X-ray luminosity, while not simultaneous, place M62-VLA1 squarely on the well-established radio--X-ray correlation for stellar-mass black holes. In archival Hubble Space Telescope imaging, M62-VLA1 is coincident with a star near the lower red giant branch. This possible optical counterpart shows a blue excess, H alpha emission, and optical variability. The radio, X-ray, and optical properties of M62-VLA1 are very similar to those for V404 Cyg, one of the best-studied quiescent stellar-mass black holes. We cannot yet rule out alternative scenarios for the radio source, such as a flaring neutron star or background galaxy; future observations are necessary to determine whether M62-VLA1 is indeed an accreting stellar-mass black hole.
We report the discovery of 31 blue, short period, pulsators made using data taken as part of the Rapid Temporal Survey (RATS). We find they have periods between 51-83 mins and full-amplitudes between 0.05-0.65 mag. Using the period-luminosity relatio nship for short period pulsating stars we determine their distance. Assuming they are pulsating in either the fundamental or first over-tone radial mode the majority are located at a distance greater than 3kpc, with several being more than 20 kpc distant. Most stars are at least 1 kpc from the Galactic plane, with three being more than 10 kpc. One is located in the direction of the Galactic anti-center and has Galactocentric distance of ~30 kpc and is ~20 kpc below the plane: they are therefore potential tracers of Galactic structure. We have obtained low-resolution spectra for a small number our targets and find they have temperatures between 7200--7900K and a metal content less than Solar. The colours of the pulsators and the spectral fits to those stars for which we have spectra indicate that they are either SX Phe or delta Scuti stars. We estimate the number of SX Phe stars in our Galaxy and find significantly fewer per unit mass than reported in massive globular clusters or dwarf spheroidal galaxies.
125 - Armin Ridinger 2011
We present the design, implementation and characterization of a dual-species magneto-optical trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains 5.2x10^9 6Li-atoms and 8.0x10^9 40K-atoms, which are cont inuously loaded by a Zeeman slower for 6Li and a 2D-MOT for 40K. The atom sources induce capture rates of 1.2x10^9 6Li-atoms/s and 1.4x10^9 40K-atoms/s. Trap losses due to light-induced interspecies collisions of ~65% were observed and could be minimized to ~10% by using low magnetic field gradients and low light powers in the repumping light of both atomic species. The described system represents the starting point for the production of a large-atom number quantum degenerate Fermi-Fermi mixture.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا