ﻻ يوجد ملخص باللغة العربية
We study theoretically, numerically, and experimentally the relaxation of a collisionless gas in a quadrupole trap after a momentum kick. The non-separability of the potential enables a quasi thermalization of the single particle distribution function even in the absence of interactions. Suprinsingly, the dynamics features an effective decoupling between the strong trapping axis and the weak trapping plane. The energy delivered during the kick is redistributed according to the symmetries of the system and satisfies the Virial theorem, allowing for the prediction of the final temperatures. We show that this behaviour is formally equivalent to the relaxation of massless relativistic Weyl fermions after a sudden displacement from the center of a harmonic trap.
This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems,
The present Chapter discusses methods by which topological Bloch bands can be prepared in cold-atom setups. Focusing on the case of Chern bands for two-dimensional systems, we describe how topological properties can be triggered by driving atomic gas
We suggest a method for engineering a quantum walk, with cold atoms as walkers, which presents topologically non-trivial properties. We derive the phase diagram, and show that we are able to produce a boundary between topologically distinct phases us
We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional optical lattices and designed to measure the second-order Renyi entanglement entropy S_2, can be used to verify detailed predictions of conformal field theory
Quantum decay of a relativistic scalar field from a false vacuum is a fundamental idea in quantum field theory. It is relevant to models of the early Universe, where the nucleation of bubbles gives rise to an inflationary universe and the creation of