ترغب بنشر مسار تعليمي؟ اضغط هنا

Glass states of superfluid A-like phase of 3He in aerogel induced by random orientations of aerogel strands are investigated theoretically and experimentally. In anisotropic aerogel with stretching deformation two glass phases are observed. Both phas es represent the anisotropic glass of the orbital ferromagnetic vector l -- the orbital glass (OG). The phases differ by the spin structure: the spin nematic vector d can be either in the ordered spin nematic (SN) state or in the disordered spin-glass (SG) state. The first phase (OG-SN) is formed under conventional cooling from normal 3He. The second phase (OG-SG) is metastable, being obtained by cooling through the superfluid transition temperature, when large enough resonant continuous radio-frequency excitation are applied. NMR signature of different phases allows us to measure the parameter of the global anisotropy of the orbital glass induced by deformation.
Recent measurements have found non-classical rotational inertia (NCRI) in solid 4He starting at T ~ 200 mK, leading to speculation that a supersolid state may exist in these materials. Differences in the NCRI fraction due to the growth method and ann ealing history imply that defects play an important role in the effect. Using x-ray synchrotron radiation, we have studied the nature of the crystals and the properties of the defects in solid 4He at temperatures down to 50 mK. Measurements of peak intensities and lattice parameters do not show indications of the supersolid transition. Using growth methods similar to those of groups measuring the NCRI we find that large crystals form. Scanning with a small (down to 10 x 10 um2) beam, we resolve a mosaic structure within these crystals consistent with numerous small angle grain boundaries. The mosaic shows significant shifts over time even at temperatures far from melting. We discuss the relevance of these defects to the NCRI observations.
X-ray diffraction experiments show that solid 4He grown in aerogel is highly polycrystalline, with a hcp crystal structure (as in bulk) and a crystallite size of approximately 100 nm. In contrast to the expectation that the highly disordered solid wi ll have a large supersolid fraction, torsional oscillator measurements show a behavior that is strikingly similar to high purity crystals grown from the superfluid phase. The low temperature supersolid fraction is only ~3x10-4 and the onset temperature is ~ 100 mK.
It was found that NMR properties of both superfluid phases of $^3$He in anisotropic aerogel can be described in terms of the bulk superfluid order parameters with the orbital order parameter vector fixed by anisotropy of the aerogel sample. It was al so shown that by a proper squeezing it is possible to get the aerogel sample with isotropic NMR properties.
We have found a new stable spin state in the A-like phase of superfluid 3He confined to intrinsically anisotropic aerogel. The state can be formed by radiofrequency excitation applied while cooling through the superfluid transition temperature and it s NMR properties are different from the standard A-like phase obtained in the limit of very small excitation. It is possible that this new state is formed by textural domain walls pinned by aerogel.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا