ﻻ يوجد ملخص باللغة العربية
X-ray diffraction experiments show that solid 4He grown in aerogel is highly polycrystalline, with a hcp crystal structure (as in bulk) and a crystallite size of approximately 100 nm. In contrast to the expectation that the highly disordered solid will have a large supersolid fraction, torsional oscillator measurements show a behavior that is strikingly similar to high purity crystals grown from the superfluid phase. The low temperature supersolid fraction is only ~3x10-4 and the onset temperature is ~ 100 mK.
In these torsional oscillator experiments the samples of solid $^4$He were characterized by measuring their thermal conducitvity. Polycrystalline samples of helium of either high isotopic purity or natural concentration of $^3$He were grown in an ann
We investigate the origin of a resonant period drop of a torsional oscillator (TO) containing solid ${}^{4}$He by inspecting its relation to a change in elastic modulus. To understand this relationship directly, we measure both phenomena simultaneous
We have measured the response of a torsional oscillator containing polycrystalline hcp solid $^{4}$He to applied steady rotation in an attempt to verify the observations of several other groups that were initially interpreted as evidence for macrosco
Recent measurements have found non-classical rotational inertia (NCRI) in solid 4He starting at T ~ 200 mK, leading to speculation that a supersolid state may exist in these materials. Differences in the NCRI fraction due to the growth method and ann
The rigid double-torus torsional oscillator (TO) is constructed to reduce any elastic effects in-herent to complicate TO structures, allowing explicit probing for a genuine supersolid signature. We investigated the frequency- and temperature-dependen