ترغب بنشر مسار تعليمي؟ اضغط هنا

Torsional oscillator and synchrotron x-ray experiments on solid 4He in aerogel

68   0   0.0 ( 0 )
 نشر من قبل Joshua West
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray diffraction experiments show that solid 4He grown in aerogel is highly polycrystalline, with a hcp crystal structure (as in bulk) and a crystallite size of approximately 100 nm. In contrast to the expectation that the highly disordered solid will have a large supersolid fraction, torsional oscillator measurements show a behavior that is strikingly similar to high purity crystals grown from the superfluid phase. The low temperature supersolid fraction is only ~3x10-4 and the onset temperature is ~ 100 mK.

قيم البحث

اقرأ أيضاً

67 - D. E. Zmeev , A. I. Golov 2011
In these torsional oscillator experiments the samples of solid $^4$He were characterized by measuring their thermal conducitvity. Polycrystalline samples of helium of either high isotopic purity or natural concentration of $^3$He were grown in an ann ular container by the blocked-capillary method and investigated before and after annealing. No correlation has been found between the magnitude of the low-temperature shift of the torsional oscillator frequency and the amount of crystalline defects as measured by the thermal conductivity. In samples with the natural $^3$He concentration a substantial excess thermal conductivity over the usual $T^3$ dependence was observed below 120 mK.
We investigate the origin of a resonant period drop of a torsional oscillator (TO) containing solid ${}^{4}$He by inspecting its relation to a change in elastic modulus. To understand this relationship directly, we measure both phenomena simultaneous ly using a TO with a pair of concentric piezoelectric transducers inserted in its annulus. Although the temperature, ${}^{3}$He concentration, and frequency dependence are essentially the same, a marked discrepancy in the drive amplitude dependence is observed. We find that this discrepancy originates from the anisotropic response of polycrystalline solid ${}^{4}$He connected with low-angle grain boundaries by studying the shear modulus parallel to and perpendicular to the driving direction.
We have measured the response of a torsional oscillator containing polycrystalline hcp solid $^{4}$He to applied steady rotation in an attempt to verify the observations of several other groups that were initially interpreted as evidence for macrosco pic quantum effects. The geometry of the cell was that of a simple annulus, with a fill line of relatively narrow diameter in the centre of the torsion rod. Varying the angular velocity of rotation up to 2,rad,s$^{-1}$ showed that there were no step-like features in the resonant frequency or dissipation of the oscillator and no history dependence, even though we achieved the sensitivity required to detect the various effects seen in earlier experiments on other rotating cryostats. All small changes during rotation were consistent with those occurring with an empty cell. We thus observed no effects on the samples of solid $^4$He attributable to steady rotation.
Recent measurements have found non-classical rotational inertia (NCRI) in solid 4He starting at T ~ 200 mK, leading to speculation that a supersolid state may exist in these materials. Differences in the NCRI fraction due to the growth method and ann ealing history imply that defects play an important role in the effect. Using x-ray synchrotron radiation, we have studied the nature of the crystals and the properties of the defects in solid 4He at temperatures down to 50 mK. Measurements of peak intensities and lattice parameters do not show indications of the supersolid transition. Using growth methods similar to those of groups measuring the NCRI we find that large crystals form. Scanning with a small (down to 10 x 10 um2) beam, we resolve a mosaic structure within these crystals consistent with numerous small angle grain boundaries. The mosaic shows significant shifts over time even at temperatures far from melting. We discuss the relevance of these defects to the NCRI observations.
78 - Jaewon Choi , Jaeho Shin , 2017
The rigid double-torus torsional oscillator (TO) is constructed to reduce any elastic effects in-herent to complicate TO structures, allowing explicit probing for a genuine supersolid signature. We investigated the frequency- and temperature-dependen t response of the rigid double-torus TO containing solid 4He with 0.6 ppb 3He and 300 ppb 3He. We did not find evidence to support the frequency-independent contribution proposed to be a property of supersolid helium. The frequency-dependent contribution which comes from the simple elastic effect of solid helium coupled to TO is essentially responsible for the entire response. The magnitude of the period drop is linearly proportional to ${f}^{2}$, indicating that the responses observed in this TO are mostly caused by the overshoot of `soft solid helium against the wall of the torus. Dissipation of the rigid TO is vastly suppressed compared to those of non-rigid TOs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا