ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-IR spectroscopy is presented for Nova Scorpii 2014. It is shown that the outburst occurred in a symbiotic binary system - an extremely rare configuration for a classical nova outburst to occur in but appropriate for the eruption of a recurrent n ova of the T CrB class. We estimate the spectral class of secondary as M5III $pm$ (two sub-classes). The maximum magnitude versus rate of decline (MMRD) relations give an unacceptably large value of 37.5 kpc for the distance. The spectra are typical of the He/N class of novae with strong HeI and H lines. The profiles are broad and flat topped with full width at zero intensities (FWZIs) approaching 9000-10000 km s$^{-1}$ and also have a sharp narrow component superposed which is attributable to emission from the giants wind. Hot shocked gas, accompanied by X-rays and $gamma$ rays, is expected to form when the high velocity ejecta from the nova plows into the surrounding giant wind. Although X-ray emission was observed no $gamma$-ray emission was reported. It is also puzzling that no signature of a decelerating shock is seen in the near-infrared (NIR), seen in similar systems like RS Oph, V745 Sco and V407 Cyg, as rapid narrowing of the line profiles. The small outburst amplitude and the giant secondary strongly suggest that Nova Sco 2014 could be a recurrent nova.
We present infrared spectroscopic and photometric observations of the nova V2468 Cyg covering the period from 2008 March 13 till 2008 November 11. The JHK spectra of the object have been taken from the Mount Abu Infrared Observatory using the Near-In frared Imager/Spectrometer. Spectra from 0.8-5.2 micron are also presented that were obtained using the NASA Infrared Telescope Facility and the SPEX instrument. The spectra are dominated by strong H I lines from the Brackett and Paschen series, Fe II, OI and CI lines in the initial days, typical of an Fe II type nova. The lines were broader in the period immediately after outburst with measured FWHM of 1800-2300 km/s for the Pa-beta and Br-gamma lines. These values narrowed to 1500-1600 km/s by 12 days from outburst. The spectra showed prominent He I lines at 1.0830 and 2.0581 micron together with H I and O I emission features after 36 days from outburst. Our IR observations show the comparatively broad emission lines, the rapid development of the spectrum to higher ionization, the early appearance of coronal lines, and the absence of dust emission, all features that indicate the hybrid nature of the nova. This is perhaps the most extensively observed example of a probable Fe IIb type nova at the infrared wavelengths. We also notice a short lived emission line of Fe II at 2.0888 micron which was present between April 9, 2008 to May 9, 2008. No dust emission is seen from the nova ejecta. We have also estimated the range for the ejecta mass in V2468 Cyg to be 3 x 10^{-6} - 10^{-5} Msun.
We present near-infrared and optical observations of moderately fast FeII-class Nova Scuti 2009 (V496 Sct) covering various phases; pre-maximum, early decline and nebular, during the first 10 months after its discovery followed by limited observation s up to 2011 April. In the initial phase the nova spectra show prominent P Cygni profiles and later all the lines are seen in emission. The notable feature of the near-IR spec- tra in the early decline phase is the rare presence of the first overtone bands of carbon monoxide (CO) in emission. The IR spectra show clear dust formation in the expand- ing ejecta at later phase about 150 days after the peak brightness. The presence of lines of elements with low ionization potentials like Na and Mg in the early IR spectra and the detection of CO bands in emission and the dust formation in V496 Sct represents a complete expected sequence in the dust formation in nova ejecta. The light curve shows a slow rise to the maximum and a slow decline indicating a prolonged mass loss. This is corroborated by the strengthening of P Cygni profiles during the first 30 days. The broad and single absorption components seen in many lines in the optical spectra at the time of discovery are replaced by two sharper components in the spectra taken close to the optical maximum brightness. These sharp dips seen in the P Cygni absorption components of Fe II and H I lines during the early decline phase show increasing outflow velocities. The onset of the nebular phase is evident from the optical spectra in 2010 March. During the nebular phase, several emission lines display saddle-like profiles. In the nebular stage, the observed fluxes of [O III] and H lines are used to estimate the electron number densities and the mass of the ejecta. The optical spectra show that the nova is evolved in the P_fe A_o spectral sequence.
36 - Blesson Mathew 2012
We present a study of the star 2MASS J22472238+5801214 with the aim of identifying its true nature which has hitherto been uncertain. This object, which is a member of the young cluster NGC 7380, has been variously proposed to be a Be star, a D-type symbiotic and a Herbig Ae/Be star in separate studies. Here we present optical spectroscopy, near-IR photometry and narrow band H-alpha imaging of the nebulosity in its environment. Analysis of all these results, including the spectral energy distribution constructed from available data, strongly indicate the source to be a Herbig Ae/Be star. The star is found to be accompanied by a nebulosity with an interesting structure. A bow shock shaped structure, similar to a cometary nebula, is seen very close to the star with its apex oriented towards the photoionizing source of this region (i.e. the star DH Cep). An interesting spectroscopic finding, from the forbidden [SII] 6716, 6731 AA and [OI] 6300 AA lines, is the detection of a blue-shifted high velocity outflow (200 +/- 50 km/s) from the star.
We present near-IR observations of the 2010 outburst of U Sco. JHK photometry is presented on ten consecutive days starting from 0.59 days after outburst. Such photometry can gainfully be integrated into a larger database of other multi-wavelength da ta which aim to comprehensively study the evolution of U Sco. Early near-IR spectra, starting from 0.56 days after outburst, are presented and their general characteristics discussed. Early in the eruption, we see very broad wings in several spectral lines, with tails extending up to ~10000km/s along the line of sight; it is unexpected to have a nova with ejection velocities equal to those usually thought to be exclusive to supernovae. From recombination analysis, we estimate an upper limit of 10^-4.64[+0.92.-0.74]Msun for the ejected mass.
We present results obtained from extensive near-infrared spectroscopic and photometric observations of nova V574 Pup during its 2004 outburst. The observations were obtained over four months, starting from 2004 November 25 (four days after the nova o utburst) to 2005 March 20. The near-IR JHK light curve is presented - no evidence is seen from it for dust formation to have occurred during our observations. In the early decline phase, the JHK spectra of the nova are dominated by emission lines of hydrogen Brackett and Paschen series, OI, CI and HeI. We also detect the fairly uncommon Fe II line at 1.6872 micron in the early part of our observations. The strengths of the HeI lines at 1.0830 micron and 2.0585 micron are found to become very strong towards the end of the observations indicating a progression towards higher excitation conditions in the nova ejecta. The width of the emission lines do not show any significant change during the course of our observations. The slope of the continuum spectrum was found to have a lambda^{-2.75} dependence in the early stages which gradually becomes flatter with time and changes to a free-free spectral dependence towards the later stages. Recombination analysis of the HI lines shows deviations from Case B conditions during the initial stages. However, towards the end of our observations, the line strengths are well simulated with case B model values with electron density n_e = 10^{9-10} cm^{-3} and a temperature equal to 10^4 K. Based on our distance estimate to the nova of 5.5 kpc and the observed free-free continuum emission in the later part of the observations, we estimate the ionized mass of the ejecta to be between 10^{-5} and 10^{-6} solar-mass.
We present near-infrared (1 - 2.5 micron) spectroscopic and photometric results of Nova V2615 Ophiuchi which was discovered in outburst in 2007 March. Our observations span a period of ~ 80 days starting from 2007 March 28 when the nova was at its ma ximum light. The evolution of the spectra are shown from the initial P-Cygni phase to an emission-line phase and finally to a dust formation stage. The characteristics of the JHK spectra are very similar to those observed in a nova outburst occurring on a carbon-oxygen white dwarf. We analyse an observed line at 2.088 micron and suggest it could be due to FeII excited by Lyman alpha fluorescence. The highlight of the observations is the detection of the first overtone bands of carbon monoxide (CO) in the 2.29 - 2.40 micron region. The CO bands are modeled to estimate the temperature and mass of the emitting CO gas and also to place limits on the 12C/13C ratio. The CO bands are recorded over several epochs thereby allowing a rare opportunity to study its evolution from a phase of constant strength through a stage when the CO is destroyed fairly rapidly. We compare the observed timescales involved in the evolution of the CO emission and find a good agreement with model predictions that investigate the chemistry in a nova outflow during the early stages.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا