ترغب بنشر مسار تعليمي؟ اضغط هنا

The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array (SKA). We describe the automated radio-frequency interference (RFI) det ection strategy implemented for the MWA, which is based on the AOFlagger platform, and present 72-231-MHz RFI statistics from 10 observing nights. RFI detection removes 1.1% of the data. RFI from digital TV (DTV) is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After RFI detection and excision, almost all data can be calibrated and imaged without further RFI mitigation efforts, including observations within the FM and DTV bands. The results are compared to a previously published Low-Frequency Array (LOFAR) RFI survey. The remote location of the MWA results in a substantially cleaner RFI environment compared to LOFARs radio environment, but adequate detection of RFI is still required before data can be analysed. We include specific recommendations designed to make the SKA more robust to RFI, including: the availability of sufficient computing power for RFI detection; accounting for RFI in the receiver design; a smooth band-pass response; and the capability of RFI detection at high time and frequency resolution (second and kHz-scale respectively).
The Murchison Widefield Array (MWA) is a new low frequency interferometric radio telescope, operating in the remote Murchison Radio Observatory in Western Australia. In this paper we present the first MWA observations of the well known radio relics i n Abell 3667 (A3667) between 120 and 226 MHz. We clearly detect the radio relics in A3667 and present flux estimates and spectral indices for these features. The average spectral index of the north-west (NW) and south-east (SE) relics is -0.9 +/- 0.1 between 120 and 1400 MHz. We are able to resolve spatial variation in the spectral index of the NW relic from -1.7 to -0.4, which is consistent with results found at higher frequencies.
We present the first Murchison Widefield Array observations of the well-known cluster of galaxies Abell 3667 (A3667) between 105 and 241 MHz. A3667 is one of the best known examples of a galaxy cluster hosting a double radio relic and has been report ed to contain a faint radio halo and bridge. The origins of radio halos, relics and bridges is still unclear, however galaxy cluster mergers seems to be an important factor. We clearly detect the North-West (NW) and South-East (SE) radio relics in A3667 and find an integrated flux density at 149 MHz of 28.1 +/- 1.7 and 2.4 +/- 0.1 Jy, respectively, with an average spectral index, between 120 and 1400 MHz, of -0.9 +/- 0.1 for both relics. We find evidence of a spatial variation in the spectral index across the NW relic steepening towards the centre of the cluster, which indicates an ageing electron population. These properties are consistent with higher frequency observations. We detect emission that could be associated with a radio halo and bridge. How- ever, due to the presence of poorly sampled large-scale Galactic emission and blended point sources we are unable to verify the exact nature of these features.
Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-sta cking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASAs w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.
We present observations of the Lynds dark nebula LDN 1111 made at microwave frequencies between 14.6 and 17.2 GHz with the Arcminute Microkelvin Imager (AMI). We find emission in this frequency band in excess of a thermal free--free spectrum extrapol ated from data at 1.4 GHz with matched uv-coverage. This excess is > 15 sigma above the predicted emission. We fit the measured spectrum using the spinning dust model of Drain & Lazarian (1998a) and find the best fitting model parameters agree well with those derived from Scuba data for this object by Visser et al. (2001).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا