ترغب بنشر مسار تعليمي؟ اضغط هنا

223 - N. D. Kylafis 2011
Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state and history of the source. In particular, black-hole XRBs emit compact, steady radio jets when they are in the so-called hard st ate, the jets become eruptive as the sources move toward the soft state, disappear in the soft state, and re-appear when the sources return to the hard state. On the other hand, jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Significant phenomenology has been accumulated so far regarding the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. Our aim is to investigate whether the phenomenology regarding the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. It has been shown that the so-called Poynting-Robertson Cosmic Battery (PRCB) explains in a natural way the formation of magnetic fields in the disks of AGN and the ejection of jets. We investigate whether the PRCB can also explain the formation, destruction, and variability of jets in XRBs. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the radio jet. The disk-jet connection in XRBs is explained in a natural way using the PRCB.
84 - N. D. Kylafis 2008
Some recent observational results impose significant constraints on all the models that have been proposed to explain the Galactic black-hole X-ray sources in the hard state. In particular, it has been found that during the hard state of Cyg X-1 the power-law photon number spectral index is correlated with the average time lag between hard and soft X-rays. Furthermore, the peak frequencies of the four Lorentzians that fit the observed power spectra are correlated with both the photon index and the time lag. We performed Monte Carlo simulations of Compton upscattering of soft, accretion-disk photons in the jet and computed the time lag between hard and soft photons and the power-law index of the resulting photon number spectra. We demonstrate that our jet model naturally explains the above correlations, with no additional requirements and no additional parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا