ترغب بنشر مسار تعليمي؟ اضغط هنا

Using NASA IRTF SpeX data from 0.8 to 4.5 $mu$m, we determine self-consistently the stellar properties and excess emission above the photosphere for a sample of classical T Tauri stars (CTTS) in the Taurus molecular cloud with varying degrees of accr etion. This process uses a combination of techniques from the recent literature as well as observations of weak-line T Tauri stars (WTTS) to account for the differences in surface gravity and chromospheric activity between the TTS and dwarfs, which are typically used as photospheric templates for CTTS. Our improved veiling and extinction estimates for our targets allow us to extract flux-calibrated spectra of the excess in the near-infrared. We find that we are able to produce an acceptable parametric fit to the near-infrared excesses using a combination of up to three blackbodies. In half of our sample, two blackbodies at temperatures of 8000 K and 1600 K suffice. These temperatures and the corresponding solid angles are consistent with emission from the accretion shock on the stellar surface and the inner dust sublimation rim of the disk, respectively. In contrast, the other half requires three blackbodies at 8000, 1800, and 800 K, to describe the excess. We interpret the combined two cooler blackbodies as the dust sublimation wall with either a contribution from the disk surface beyond the wall or curvature of the wall itself, neither of which should have single-temperature blackbody emission. In these fits, we find no evidence of a contribution from optically thick gas inside the inner dust rim.
We present Herschel Space Observatory PACS spectra of GQ Lup, a protoplanetary disk in the Lupus star-forming region. Through SED fitting from 0.3{mu}m to 1.3mm, we construct a self-consistent model of this systems temperature and density structures, finding that although it is 3 Myr old, its dust has not settled to the midplane substantially. The disk has a radial gradient in both the silicate dust composition and grain size, with large amorphous grains in the upper layers of the inner disk and an enhancement of submicron, crystalline grains in the outer disk. We detect an excess of emission in the Herschel PACS B2A band near 63{mu}m and model it with a combination of {sim}15 to 70{mu}m crystalline water ice grains with a size distribution consistent with ice recondensation-enhanced grain growth and a mass fraction half of that of our solar system. The combination of crystalline water ice and silicates in the outer disk is suggestive of disk-wide heating events or planetesimal collisions. If confirmed, this would be the first detection of water ice by Herschel.
This work aims to derive accretion rates for a sample of 38 HAeBe stars. We apply magnetospheric accretion (MA) shock modelling to reproduce the observed Balmer excesses. We look for possible correlations with the strength of the Halpha, [OI]6300, an d Brgamma emission lines. The median mass accretion rate is 2 x 10^-7 Msun yr^-1 in our sample. The model fails to reproduce the large Balmer excesses shown by the four hottest stars (T* > 12000 K). We derive Macc propto M*^5 and Lacc propto L*^1.2 for our sample, with scatter. Empirical calibrations relating the accretion and the Halpha, [OI]6300, and Brgamma luminosities are provided. The slopes in our expressions are slightly shallower than those for lower mass stars, but the difference is within the uncertainties, except for the [OI]6300 line. The Halpha 10% width is uncorrelated with Macc, unlike for the lower mass regime. The mean Halpha width shows higher values as the projected rotational velocities of HAe stars increase, which agrees with MA. The accretion rate variations in the sample are typically lower than 0.5 dex on timescales of days to months, Our data suggest that the changes in the Balmer excess are uncorrelated to the simultaneous changes of the line luminosities. The Balmer excesses and Halpha line widths of HAe stars can be interpreted within the context of MA, which is not the case for several HBes. The steep trend relating Macc and M* can be explained from the mass-age distribution characterizing HAeBe stars. The line luminosities used for low-mass objects are also valid to estimate typical accretion rates for the intermediate-mass regime under similar empirical expressions. However, we suggest that several of these calibrations are driven by the stellar luminosity.
67 - E. Furlan 2007
We present the mid-infrared spectrum, obtained with the Spitzer Infrared Spectrograph (IRS), of HD 98800, a quadruple star system located in the 10-Myr-old TW Hydrae association. It has a known mid-infrared excess that arises from a circumbinary disk around the B components of the system. The IRS spectrum confirms that the disk around HD 98800 B displays no excess emission below about 5.5 micron, implying an optically thick disk wall at 5.9 AU and an inner, cleared-out region; however, some optically thin dust, consisting mainly of 3-micron-sized silicate dust grains, orbits the binary in a ring between 1.5 and 2 AU. The peculiar structure and apparent lack of gas in the HD 98800 B disk suggests that this system is likely already at the debris disks stage, with a tidally truncated circumbinary disk of larger dust particles and an inner, second-generation dust ring, possibly held up by the resonances of a planet. The unusually large infrared excess can be explained by gravitational perturbations of the Aa+Ab pair puffing up the outer dust ring and causing frequent collisions among the larger particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا