ﻻ يوجد ملخص باللغة العربية
We present the mid-infrared spectrum, obtained with the Spitzer Infrared Spectrograph (IRS), of HD 98800, a quadruple star system located in the 10-Myr-old TW Hydrae association. It has a known mid-infrared excess that arises from a circumbinary disk around the B components of the system. The IRS spectrum confirms that the disk around HD 98800 B displays no excess emission below about 5.5 micron, implying an optically thick disk wall at 5.9 AU and an inner, cleared-out region; however, some optically thin dust, consisting mainly of 3-micron-sized silicate dust grains, orbits the binary in a ring between 1.5 and 2 AU. The peculiar structure and apparent lack of gas in the HD 98800 B disk suggests that this system is likely already at the debris disks stage, with a tidally truncated circumbinary disk of larger dust particles and an inner, second-generation dust ring, possibly held up by the resonances of a planet. The unusually large infrared excess can be explained by gravitational perturbations of the Aa+Ab pair puffing up the outer dust ring and causing frequent collisions among the larger particles.
Here we present the Spitzer IRS spectrum of CVSO 224, the sole transitional disk located within the ~10 Myr old 25 Orionis group in Orion OB1a. A model fit to the spectral energy distribution of this object indicates a ~7 AU inner disk hole that cont
We present sub-arcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0.8 (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 microns
The quadruple young stellar system HD 98800 consists of two spectroscopic binary pairs with a circumbinary disk around the B component. Recent work by Boden and collaborators using infrared interferometry and radial velocity data resulted in a determ
Most Vega-like stars have far-infrared excess (60micron or longward in IRAS, ISO, or Spitzer MIPS bands) and contain cold dust (<~150K) analogous to the Suns Kuiper-Belt region. However, dust in a region more akin to our asteroid belt and thus releva
Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, makin