ترغب بنشر مسار تعليمي؟ اضغط هنا

HD 98800: A 10-Myr-Old Transition Disk

156   0   0.0 ( 0 )
 نشر من قبل Elise Furlan
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Furlan




اسأل ChatGPT حول البحث

We present the mid-infrared spectrum, obtained with the Spitzer Infrared Spectrograph (IRS), of HD 98800, a quadruple star system located in the 10-Myr-old TW Hydrae association. It has a known mid-infrared excess that arises from a circumbinary disk around the B components of the system. The IRS spectrum confirms that the disk around HD 98800 B displays no excess emission below about 5.5 micron, implying an optically thick disk wall at 5.9 AU and an inner, cleared-out region; however, some optically thin dust, consisting mainly of 3-micron-sized silicate dust grains, orbits the binary in a ring between 1.5 and 2 AU. The peculiar structure and apparent lack of gas in the HD 98800 B disk suggests that this system is likely already at the debris disks stage, with a tidally truncated circumbinary disk of larger dust particles and an inner, second-generation dust ring, possibly held up by the resonances of a planet. The unusually large infrared excess can be explained by gravitational perturbations of the Aa+Ab pair puffing up the outer dust ring and causing frequent collisions among the larger particles.



قيم البحث

اقرأ أيضاً

Here we present the Spitzer IRS spectrum of CVSO 224, the sole transitional disk located within the ~10 Myr old 25 Orionis group in Orion OB1a. A model fit to the spectral energy distribution of this object indicates a ~7 AU inner disk hole that cont ains a small amount of optically thin dust. In previous studies, CVSO 224 had been classified as a weak-line T Tauri star based on its Halpha equivalent width, but here we find an accretion rate of 7x10^-11 Msun/yr based on high-resolution Hectochelle data. CVSO 224s low mass accretion rate is in line with photoevaporative clearing theories. However, the Spitzer IRS spectrum of CVSO 224 has a substantial mid-infrared excess beyond 20microns which indicates that it is surrounded by a massive outer disk. Millimeter measurements are necessary to constrain the mass of the outer disk around CVSO 224 in order to confirm that photoevaporation is not the mechanism behind creating its inner disk hole.
We present sub-arcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0.8 (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 microns show unequivocally that the optically fainter binary, HD 98800B, is the sole source of a comparatively large infrared excess upon which a silicate emission feature is superposed. The excess is detected only at wavelengths of 7.9 microns and longer, peaks at 25 microns, and has a best-fit black-body temperature of 150 K, indicating that most of the dust lies at distances greater than the orbital separation of the spectroscopic binary. We estimate the radial extent of the dust with a disk model that approximates radiation from the spectroscopic binary as a single source of equivalent luminosity. Given the data, the most-likely values of disk properties in the ranges considered are R_in = 5.0 +/- 2.5 AU, DeltaR = 13+/-8 AU, lambda_0 = 2(+4/-1.5) microns, gamma = 0+/-2.5, and sigma_total = 16+/-3 AU^2, where R_in is the inner radius, DeltaR is the radial extent of the disk, lambda_0 is the effective grain size, gamma is the radial power-law exponent of the optical depth, tau, and sigma_total is the total cross-section of the grains. The range of implied disk masses is 0.001--0.1 times that of the moon. These results show that, for a wide range of possible disk properties, a circumbinary disk is far more likely than a narrow ring.
The quadruple young stellar system HD 98800 consists of two spectroscopic binary pairs with a circumbinary disk around the B component. Recent work by Boden and collaborators using infrared interferometry and radial velocity data resulted in a determ ination of the physical orbit for HD 98800 B. We use the resulting inclination of the binary and the measured extinction toward the B component stars to constrain the distribution of circumbinary material. Although a standard optically and geometrically thick disk model can reproduce the spectral energy distribution, it can not account for the observed extinction if the binary and the disk are co-planar. We next constructed a dynamical model to investigate the influence of the A component, which is not in the Ba-Bb orbital plane, on the B disk. We find that these interactions have a substantial impact on the inclination of the B circumbinary disk with respect to the Ba-Bb orbital plane. The resulting warp would be sufficient to place material into the line of sight and the non-coplanar disk orientation may also cause the upper layers of the disk to intersect the line of sight if the disk is geometrically thick. These simulations also support that the dynamics of the Ba-Bb orbit clear the inner region to a radius of ~3 AU. We then discuss whether the somewhat unusual properties of the HD 98800 B disk are consistent with material remnant from the star formation process or with more recent creation by collisions from larger bodies.
Most Vega-like stars have far-infrared excess (60micron or longward in IRAS, ISO, or Spitzer MIPS bands) and contain cold dust (<~150K) analogous to the Suns Kuiper-Belt region. However, dust in a region more akin to our asteroid belt and thus releva nt to the terrestrial planet building process is warm and produces excess emission in mid-infrared wavelengths. By cross-correlating Hipparcos dwarfs with the MSX catalog, we found that EF Cha, a member of the recently identified, ~10 Myr old, ``Cha-Near Moving Group, possesses prominent mid-infrared excess. N-band spectroscopy reveals a strong emission feature characterized by a mixture of small, warm, amorphous and possibly crystalline silicate grains. Survival time of warm dust grains around this A9 star is <~ 1E5 yrs, much less than the age of the star. Thus, grains in this extra-solar terrestrial planetary zone must be of second generation and not a remnant of primodial dust and are suggestive of substantial planet formation activity. Such second generation warm excess occurs around ~ 13% of the early-type stars in nearby young stellar associations.
596 - W.F. Thi , G. Mathews , F. Menard 2010
Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, makin g TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the Open-time large program GASPS. We complement this with continuum data and ground-based 12CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 micron. The other lines that were observed, [OI] at 145 micron and [CII] at 157 micron, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [12CO]/[13CO]=69 suggests a dust mass for grains with radius < 1 mm of ~1.9 times 10^-4 Msun (total solid mass of 3 times 10^-3 Msun) and a gas mass of (0.5--5) times 10^-3 Msun. The gas-to-dust mass may be lower than the standard interstellar value of 100.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا