ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of stellar parameters of planet-hosting stars, such as metallicity and chemical abundances, help us to understand the theory of planet formation and stellar evolution. Here, we present a catalogue of accurate stellar atmospheric parameters and iron abundances for a sample of 257 K and G field evolved stars that are being surveyed for planets using precise radial--velocity measurements as part of the CORALIE programme to search for planets around giants. The analysis was done using a set of high--resolution and high--signal-to-noise Ultraviolet and Visible Echelle Spectrograph spectra. The stellar parameters were derived using Fe I and II ionization and excitation equilibrium methods. To take into account possible effects related to the choice of the lines on the derived parameters, we used three different iron line-list sets in our analysis, and the results differ among themselves by a small factor for most of stars. {For those stars with previous literature parameter estimates, we found very good agreement with our own values.} In the present catalogue we are providing new precise spectroscopic measurements of effective temperature, surface gravity, microturbulence, and metallicity for 190 stars for which it has not been found or published in previous articles.
Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results. We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions. We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases.
Transmission spectroscopy during planetary transits, which is based on the measurements of the variations of planet-to-star radius ratio as a function of wavelength, is a powerful technique to study the atmospheric properties of transiting planets. O ne of the main limitation of this technique is the effects of stellar activity, which up until now, have been taken into account only by assessing the effect of non-occulted stellar spots on the estimates of planet-to-star radius ratio. In this paper, we study, for the first time, the impact of the occultation of a stellar spot and plage on the transmission spectra of transiting exoplanets. We simulated this effect by generating a large number of transit light curves for different transiting planets, stellar spectral types, and for different wavelengths. Results of our simulations indicate that the anomalies inside the transit light curve can lead to a significant underestimation or overestimation of the planet-to-star radius ratio as a function of wavelength. At short wavelengths, the effect can reach to a difference of up to 10% in the planet-to-star radius ratio, mimicking the signature of light scattering in the planetary atmosphere. Atmospheric scattering has been proposed to interpret the increasing slopes of transmission spectra toward blue for exoplanets HD 189733b and GJ 3470b. Here we show that these signatures can be alternatively interpreted by the occultation of stellar plages. Results also suggest that the best strategy to identify and quantify the effects of stellar activities on the transmission spectrum of a planet is to perform several observations during the transit epoch at the same wavelength. This will allow for identifying the possible variations in transit depth as a function of time due to stellar activity variability.
(Abridged) We analyze chemical and kinematical properties of about 850 FGK solar neighborhood long-lived dwarfs observed with the HARPS high-resolution spectrograph. The stars in the sample have logg > 4 dex, 5000 < Teff < 6500 K, and -1.39 < [Fe/H] < 0.55 dex. We apply a purely chemical analysis approach based on the [alpha/Fe] vs. [Fe/H] plot to separate Galactic stellar populations into the thin disk, thick disk and high-alpha metal-rich (hamr). Our analysis shows a negative gradient of the rotational velocity of the thin disk stars with [Fe/H] (-17 km s^-1 dex^-1), and a steep positive gradient for both the thick disk and hamr stars with the same magnitude of about +42 km s^-1 dex^-1. For the thin disk stars we observed no correlation between orbital eccentricities and metallicity, but observed a steep negative gradient for the thick disk and hamr stars with practically the same magnitude (about -0.18 dex^-1). Our results suggest that radial migration played an important role in the formation and evolution of the thin disk. For the thick disk stars it is not possible to reach a firm conclusion about their origin. Based on the eccentricity distribution of the thick disk stars only their accretion origin can be ruled out, and the heating and migration scenario could explain the positive steep gradient of V_phi with [Fe/H]. Analyzing the hamr stellar population we found that they share properties of both the thin and thick disk population. A comparison of the properties of the hamr stars with that of the subsample of stars from the N-body/SPH simulation using radial migration suggest that they may have originated from the inner Galaxy. Further detailed investigations would help to clarify their exact nature and origin.
We present a study of the stellar parameters and iron abundances of 18 giant stars in 6 open clusters. The analysis was based on high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT-UT2). The results complement our previous s tudy where 13 clusters were already analyzed. The total sample of 18 clusters is part of a program to search for planets around giant stars. The results show that the 18 clusters cover a metallicity range between -0.23 and +0.23 dex. Together with the derivation of the stellar masses, these metallicities will allow the metallicity and mass effects to be disentangled when analyzing the frequency of planets as a function of these stellar parameters.
Context: Several studies have so far placed useful constraints on planetary atmospheric properties using transmission spectrsocopy, and in the case of HD209458b even the radial velocity of the planet during the transit event has been reconstructed op ening a new range of possibilities. AIMS. In this contribution we highlight the importance to account for the orbital eccentricity and longitude of periastron of the planetary orbit to accurately interpret the measured planetary radial velocity during the transit. Methods: We calculate the radial velocity of a transiting planet in an eccentric orbit. Given the larger orbital speed of planets with respect to their stellar companions even small eccentricities can result in detectable blue or redshift radial velocity offsets during the transit with respect to the systemic velocity, the exact value depending also on the longitude of the periastron of the planetary orbit. For an hot-jupiter planet, an eccentricity of only e=0.01 can produce a radial velocity offset of the order of the km/s. Conclusions: We propose an alternative interpretation of the recently claimed radial velocity blueshift (~2 km/s) of the planetary spectral lines of HD209458b which implies that the orbit of this system is not exactly circular. In this case, the longitude of the periastron of the stellar orbit is most likely confined in the first quadrant (and that one of the planet in the third quadrant). We highlight that transmission spectroscopy allows not only to study the compositional properties of planetary atmospheres, but also to refine their orbital parameters and that any conclusion regarding the presence of windflows on planetary surfaces coming from transmission spectroscopy measurements requires precise known orbital parameters from RV.
228 - N. C. Santos , S. Udry , F. Bouchy 2008
We present the detection of a 0.47 Jupiter mass planet in a 44-day period eccentric trajectory (e=0.39) orbiting the metal-rich star HD45652. This planet, the seventh giant planet discovered in the context of the ELODIE metallicity-biased planet sear ch program, is also confirmed using higher precision radial-velocities obtained with the CORALIE and SOPHIE spectrographs. The orbital period of HD45652b places it in the middle of the gap in the period distribution of extra-solar planets.
In this paper we present a study of chemical abundances in six star-forming regions. Stellar parameters and metallicities are derived using high-resolution, high S/N spectra of weak-line T-Tauri stars in each region. The results show that nearby star -forming regions have a very small abundance dispersion (only 0.033dex in [Fe/H]). The average metallicity found is slightly below that of the Sun, although compatible with solar once the errors are taken into account. The derived abundances for Si and Ni show that the observed stars have the abundances typical of Galactic thin disk stars of the same metallicity. The impact of these observations is briefly discussed in the context of the Galactic chemical evolution, local inter-stellar medium abundances, and in the origin of metal-rich stars in the solar neighbourhood (namely, stars more likely to harbour planets). The implication for future planet-search programmes around very young, nearby stars is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا