ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, approximate outage probability (OP) expressions are derived for uplink cell-free massive multiple-input-multiple-output (CF-mMIMO) system. The access points (APs) of the system considered have imperfect channel state information (CSI). The approximate expressions are derived first using conditional expectations and then using a novel dimension reduction method that approximates higher-order integration by several single order integrations. Using the same approach, closed-form approximations are also derived for conventional massive MIMO (mMIMO) systems. The OP approximations are then used to characterize the performance of cell-edge users of CF-mMIMO systems and compare the designs of CF-mMIMO and mMIMO systems. The derived expressions have a close match with the simulated expression for OP.
A high-rate yet low-cost air-to-ground (A2G) communication backbone is conceived for integrating the space and terrestrial network by harnessing the opportunistic assistance of the passenger planes or high altitude platforms (HAPs) as mobile base sta tions (BSs) and millimetre wave communication. The airliners act as the network-provider for the terrestrial users while relying on satellite backhaul. Three different beamforming techniques relying on a large-scale planar array are used for transmission by the airliner/HAP for achieving a high directional gain, hence minimizing the interference among the users. Furthermore, approximate spectral efficiency (SE) and area spectral efficiency (ASE) expressions are derived and quantified for diverse system parameters.
This paper introduces an incremental training framework for compressing popular Deep Neural Network (DNN) based unfolded multiple-input-multiple-output (MIMO) detection algorithms like DetNet. The idea of incremental training is explored to select th e optimal depth while training. To reduce the computation requirements or the number of FLoating point OPerations (FLOPs) and enforce sparsity in weights, the concept of structured regularization is explored using group LASSO and sparse group LASSO. Our methods lead to an astounding $98.9%$ reduction in memory requirement and $81.63%$ reduction in FLOPs when compared with DetNet without compromising on BER performance.
This paper considers the joint power control and resource allocation for a device-to-device (D2D) underlay cellular system with a multi-antenna BS employing ADCs with different resolutions. We propose a four-step algorithm that optimizes the ADC reso lution profile at the base station (BS) to reduce the energy consumption and perform joint power control and resource allocation of D2D communication users (DUEs) and cellular users (CUEs) to improve the D2D reliability.
Using tools from extreme value theory (EVT), it is proved that, when the user signal and the interferer signals undergo independent and non-identically distributed (i.n.i.d.) $kappa-mu$ shadowed fading, the limiting distribution of the maximum of $L$ independent and identically distributed (i.i.d.) signal-to-interference ratio (SIR) random variables (RVs) is a Frechet distribution. It is observed that this limiting distribution is close to the true distribution of maximum, for maximum SIR evaluated over moderate $L$. Further, moments of the maximum RV is shown to converge to the moments of the Frechet RV. Also, the rate of convergence of the actual distribution of the maximum to the Frechet distribution is derived and is analyzed for different $kappa$ and $mu$ parameters. Finally, results from stochastic ordering are used to analyze the variation in the limiting distribution with respect to the variation in source fading parameters. These results are then used to derive upper bound for the rate in Full Array Selection (FAS) schemes for antenna selection and the asymptotic outage probability and the ergodic rate in maximum-sum-capacity (MSC) scheduling systems.
Approximate outage probability expressions are derived for systems employing maximum ratio combining, when both the desired signal and the interfering signals are subjected to $eta-mu$ fading, with the interferers having unequal power. The approximat ions are in terms of the Appell Function and Gauss hypergeometric function. A close match is observed between the outage probability result obtained through the derived analytical expression and the one obtained through Monte-Carlo simulations.
Approximate Symbol error rate (SER), outage probability and rate expressions are derived for receive diversity system employing optimum combining when both the desired and the interfering signals are subjected to Rician fading, for the cases of a) eq ual power uncorrelated interferers b) unequal power interferers c) interferer correlation. The derived expressions are applicable for an arbitrary number of receive antennas and interferers and for any quadrature amplitude modulation (QAM) constellation. Furthermore, we derive a simple closed form expression for SER in the interference-limited regime, for the special case of Rayleigh faded interferers. A close match is observed between the SER, outage probability and rate results obtained through the derived analytical expressions and the ones obtained from Monte-Carlo simulations.
Approximate random matrix models for $kappa-mu$ and $eta-mu$ faded multiple input multiple output (MIMO) communication channels are derived in terms of a complex Wishart matrix. The proposed approximation has the least Kullback-Leibler (KL) divergenc e from the original matrix distribution. The utility of the results are demonstrated in a) computing the average capacity/rate expressions of $kappa-mu$/$eta-mu$ MIMO systems b) computing outage probability (OP) expressions for maximum ratio combining (MRC) for $kappa-mu$/$eta-mu$ faded MIMO channels c) ergodic rate expressions for zero-forcing (ZF) receiver in an uplink single cell massive MIMO scenario with low resolution analog-to-digital converters (ADCs) in the antennas. These approximate expressions are compared with Monte-Carlo simulations and a close match is observed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا