ترغب بنشر مسار تعليمي؟ اضغط هنا

All previous cuprate superconductors display a set of common features: (i) vicinity to a Cu 3$d^{9}$ configuration; (ii) separated CuO$_2$ planes; (iii) superconductivity for doping $delta sim$ 0.1$-$0.3. Recently [PNAS {bf 24}, 12156 (2019)] challen ged this picture by discovering highly overdoped superconducting Ba$_2$CuO$_{3+y}$. Using density-functional theory + dynamical mean-field theory, we reveal a bilayer structure of Ba$_2$CuO$_{3.2}$ of alternating quasi 2D and quasi 1D character. Correlations tune an inter-layer self-doping leading to an almost half-filled, strongly nested quasi 1D $d_{b^2-c^2}$ band, which is prone to strong antiferromagnetic fluctuations, possibly at the origin of superconductivity in Ba$_2$CuO$_{3+y}$.
We extend the natural orbital impurity solver [PRB 90, 085102 (2014)] to finite temperatures within the dynamical mean field theory and apply it to calculate transport properties of correlated electrons. First, we benchmark our method against the exa ct diagonalization result for small clusters, finding that the natural orbital scheme works well not only for zero temperature but for low finite temperatures. The method yields smooth and sufficiently accurate spectra, which agree well with the results of the numerical renormalization group. Using the smooth spectra, we calculate the electric conductivity and Seebeck coefficient for the two-dimensional Hubbard model at low temperatures which are in the scope of many experiments and practical applications. These results demonstrate the usefulness of the natural orbital framework for obtaining the real frequency information within the dynamical mean field theory.
Following the discovery of superconductivity in the cuprates and the seminal work by Anderson, the theoretical efforts to understand high-temperature superconductivity have been focusing to a large extent on a simple model: the one-band Hubbard model . However, superconducting cuprates need to be doped, and the doped holes go into the oxygen orbitals. This requires a more elaborate multi-band model such as the three-orbital Emery model. The recently discovered nickelate superconductors appear, at first glance, to be even more complicated multi-orbital systems. Here, we analyse this multi-orbital system and find that it is instead the nickelates which can be described by a one-band Hubbard model, albeit with an additional electron reservoir and only around the superconducting regime. Our calculations of the critical temperature Tc are in good agreement with experiment, and show that optimal doping is slightly below the 20% Sr-doping of Ref. 11. Even more promising than 3d nickelates are 4d palladates.
While multiband systems are usually considered for flat-band physics, here we study one-band models that have flat portions in the dispersion to explore correlation effects in the 2D repulsive Hubbard model in an intermediate coupling regime. The FLE X+DMFT~(the dynamical mean-field theory combined with the fluctuation exchange approximation) is used to show that we have a crossover from ferromagnetic to antiferromagnetic spin fluctuations as the band filling is varied, which triggers a crossover from triplet to singlet pairings with a peculiar filling dependence that is dominated by the size of the flat region in the dispersion. A curious manifestation of the flat part appears as larger numbers of nodal lines associated with pairs extended in real space. We further detect non-Fermi liquid behavior in the momentum distribution function, frequency dependence of the self-energy and spectral function. These indicate correlation physics peculiar to flat-band systems.
To fathom the mechanism of high-temperature ($T_{rm c}$) superconductivity, the dynamical vertex approximation (D$Gamma$A) is evoked for the two-dimensional repulsive Hubbard model. After showing that our results well reproduce the cuprate phase diag ram with a reasonable $T_{rm c}$ and dome structure, we keep track of the scattering processes that primarily affect $T_{rm c}$. We find that local particle-particle diagrams significantly screen the bare interaction at low frequencies, which in turn suppresses antiferromagnetic spin fluctuations and hence the pairing interaction. Thus we identify dynamical vertex corrections as one of the main oppressors of $T_{rm c}$, which may provide a hint toward higher $T_{rm c}$s.
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation exchange approximation (FLEX+DMFT). We show that the four-fold symmetric Fermi surface becomes unstable against a spontaneous distortion into two-fold near the van Hove filling, where the symmetry of superconductivity coexisting with the Pomeranchuk distorted Fermi surface is modified from the d-wave pairing to (d+s)-wave. By systematically shifting the position of van Hove filling with varied second- and third-neighbor hoppings, we find that the transition temperature $T_{rm c}^{rm PI}$ of Pomeranchuk instability is more sensitively affected by the position of van Hove filling than the superconducting $T_{rm c}^{rm SC}$. This implies that the filling region for strong Pomeranchuk instability and that for strong superconducting fluctuations can be separated, and Pomeranchuk instability can appear even if the peak of $T_c^{rm PI}$ is lower than the peak of $T_c^{rm SC}$. An interesting observation is that the Fermi surface distortion can enhance the superconducting $T_{rm c}^{rm SC}$ in the overdoped regime, which is explained with a perturbation picture for small distortions.
The dynamical mean-field theory (DMFT) combined with the fluctuation exchange (FLEX) method, namely FLEX+DMFT, is an approach for correlated electron systems to incorporate both local and non-local long-range correlations in a self-consistent manner. We formulate FLEX+DMFT in a systematic way starting from a Luttinger-Ward functional, and apply it to study the $d$-wave superconductivity in the two-dimensional repulsive Hubbard model. The critical temperature ($T_c$) curve obtained in the FLEX+DMFT exhibits a dome structure as a function of the filling, which has not been clearly observed in the FLEX approach alone. We trace back the origin of the dome to the local vertex correction from DMFT that renders a filling dependence in the FLEX self-energy. We compare the results with those of GW+DMFT, where the $T_c$-dome structure is qualitatively reproduced due to the same vertex correction effect, but a crucial difference from FLEX+DMFT is that $T_c$ is always estimated below the N{e}el temperature in GW+DMFT. The single-particle spectral function obtained with FLEX+DMFT exhibits a double-peak structure as a precursor of the Hubbard bands at temperature above $T_c$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا