ترغب بنشر مسار تعليمي؟ اضغط هنا

Document subject classification is essential for structuring (digital) libraries and allowing readers to search within a specific field. Currently, the classification is typically made by human domain experts. Semi-supervised Machine Learning algorit hms can support them by exploiting the labeled data to predict subject classes for unclassified new documents. However, while humans partly do, machines mostly do not explain the reasons for their decisions. Recently, explainable AI research to address the problem of Machine Learning decisions being a black box has increasingly gained interest. Explainer models have already been applied to the classification of natural language texts, such as legal or medical documents. Documents from Science, Technology, Engineering, and Mathematics (STEM) disciplines are more difficult to analyze, since they contain both textual and mathematical formula content. In this paper, we present first advances towards STEM document classification explainability using classical and mathematical Entity Linking. We examine relationships between textual and mathematical subject classes and entities, mining a collection of documents from the arXiv preprint repository (NTCIR and zbMATH dataset). The results indicate that mathematical entities have the potential to provide high explainability as they are a crucial part of a STEM document.
Many digital libraries recommend literature to their users considering the similarity between a query document and their repository. However, they often fail to distinguish what is the relationship that makes two documents alike. In this paper, we mo del the problem of finding the relationship between two documents as a pairwise document classification task. To find the semantic relation between documents, we apply a series of techniques, such as GloVe, Paragraph-Vectors, BERT, and XLNet under different configurations (e.g., sequence length, vector concatenation scheme), including a Siamese architecture for the Transformer-based systems. We perform our experiments on a newly proposed dataset of 32,168 Wikipedia article pairs and Wikidata properties that define the semantic document relations. Our results show vanilla BERT as the best performing system with an F1-score of 0.93, which we manually examine to better understand its applicability to other domains. Our findings suggest that classifying semantic relations between documents is a solvable task and motivates the development of recommender systems based on the evaluated techniques. The discussions in this paper serve as first steps in the exploration of documents through SPARQL-like queries such that one could find documents that are similar in one aspect but dissimilar in another.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا