ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Explaining STEM Document Classification using Mathematical Entity Linking

97   0   0.0 ( 0 )
 نشر من قبل Philipp Scharpf
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Document subject classification is essential for structuring (digital) libraries and allowing readers to search within a specific field. Currently, the classification is typically made by human domain experts. Semi-supervised Machine Learning algorithms can support them by exploiting the labeled data to predict subject classes for unclassified new documents. However, while humans partly do, machines mostly do not explain the reasons for their decisions. Recently, explainable AI research to address the problem of Machine Learning decisions being a black box has increasingly gained interest. Explainer models have already been applied to the classification of natural language texts, such as legal or medical documents. Documents from Science, Technology, Engineering, and Mathematics (STEM) disciplines are more difficult to analyze, since they contain both textual and mathematical formula content. In this paper, we present first advances towards STEM document classification explainability using classical and mathematical Entity Linking. We examine relationships between textual and mathematical subject classes and entities, mining a collection of documents from the arXiv preprint repository (NTCIR and zbMATH dataset). The results indicate that mathematical entities have the potential to provide high explainability as they are a crucial part of a STEM document.



قيم البحث

اقرأ أيضاً

In this paper we propose a new document classification method, bridging discrepancies (so-called semantic gap) between the training set and the application sets of textual data. We demonstrate its superiority over classical text classification approa ches, including traditional classifier ensembles. The method consists in combining a document categorization technique with a single classifier or a classifier ensemble (SEMCOM algorithm - Committee with Semantic Categorizer).
Entity linking (or Normalization) is an essential task in text mining that maps the entity mentions in the medical text to standard entities in a given Knowledge Base (KB). This task is of great importance in the medical domain. It can also be used f or merging different medical and clinical ontologies. In this paper, we center around the problem of disease linking or normalization. This task is executed in two phases: candidate generation and candidate scoring. In this paper, we present an approach to rank the candidate Knowledge Base entries based on their similarity with disease mention. We make use of the Triplet Network for candidate ranking. While the existing methods have used carefully generated sieves and external resources for candidate generation, we introduce a robust and portable candidate generation scheme that does not make use of the hand-crafted rules. Experimental results on the standard benchmark NCBI disease dataset demonstrate that our system outperforms the prior methods by a significant margin.
Domain specific information retrieval process has been a prominent and ongoing research in the field of natural language processing. Many researchers have incorporated different techniques to overcome the technical and domain specificity and provide a mature model for various domains of interest. The main bottleneck in these studies is the heavy coupling of domain experts, that makes the entire process to be time consuming and cumbersome. In this study, we have developed three novel models which are compared against a golden standard generated via the on line repositories provided, specifically for the legal domain. The three different models incorporated vector space representations of the legal domain, where document vector generation was done in two different mechanisms and as an ensemble of the above two. This study contains the research being carried out in the process of representing legal case documents into different vector spaces, whilst incorporating semantic word measures and natural language processing techniques. The ensemble model built in this study, shows a significantly higher accuracy level, which indeed proves the need for incorporation of domain specific semantic similarity measures into the information retrieval process. This study also shows, the impact of varying distribution of the word similarity measures, against varying document vector dimensions, which can lead to improvements in the process of legal information retrieval.
We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the authors publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to authors expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the authors documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the authors expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling authors profile via our semantic graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University.
We introduce and make publicly available an entity linking dataset from Reddit that contains 17,316 linked entities, each annotated by three human annotators and then grouped into Gold, Silver, and Bronze to indicate inter-annotator agreement. We ana lyze the different errors and disagreements made by annotators and suggest three types of corrections to the raw data. Finally, we tested existing entity linking models that are trained and tuned on text from non-social media datasets. We find that, although these existing entity linking models perform very well on their original datasets, they perform poorly on this social media dataset. We also show that the majority of these errors can be attributed to poor performance on the mention detection subtask. These results indicate the need for better entity linking models that can be applied to the enormous amount of social media text.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا