ترغب بنشر مسار تعليمي؟ اضغط هنا

136 - Mir Abbas Jalali 2014
We report an unexpected reverse spiral turn in the final stage of the motion of rolling rings. It is well known that spinning disks rotate in the same direction of their initial spin until they stop. While a spinning ring starts its motion with a kin ematics similar to disks, i.e. moving along a cycloidal path prograde with the direction of its rigid body rotation, the mean trajectory of its center of mass later develops an inflection point so that the ring makes a spiral turn and revolves in a retrograde direction around a new center. Using high speed imaging and numerical simulations of models featuring a rolling rigid body, we show that the hollow geometry of a ring tunes the rotational air drag resistance so that the frictional force at the contact point with the ground changes its direction at the inflection point and puts the ring on a retrograde spiral trajectory. Our findings have potential applications in designing topologically new surface-effect flying objects capable of performing complex reorientation and translational maneuvers.
We design and simulate the motion of a new swimmer, the {it Quadroar}, with three dimensional translation and reorientation capabilities in low Reynolds number conditions. The Quadroar is composed of an $texttt{I}$-shaped frame whose body link is a s imple linear actuator, and four disks that can rotate about the axes of flange links. The time symmetry is broken by a combination of disk rotations and the one-dimensional expansion/contraction of the body link. The Quadroar propels on forward and transverse straight lines and performs full three dimensional reorientation maneuvers, which enable it to swim along arbitrary trajectories. We find continuous operation modes that propel the swimmer on planar and three dimensional periodic and quasi-periodic orbits. Precessing quasi-periodic orbits consist of slow lingering phases with cardioid or multiloop turns followed by directional propulsive phases. Quasi-periodic orbits allow the swimmer to access large parts of its neighboring space without using complex control strategies. We also discuss the feasibility of fabricating a nano-scale Quadroar by photoactive molecular rotors.
We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a long-range attractive and a short-range repulsive potential fiel d known as Morse potential. We assume Stokesian drag force between particles and their carrier fluid, and find analytic single-peaked traveling solutions for the spatial density of particles in the catastrophic phase. In steady flow conditions the streaming velocity of particles is identical to their carrier fluid, but we show that particle streaming is asynchronous with an unsteady carrier fluid. Using linear perturbation analysis, the stability of traveling solutions is investigated in unsteady conditions. It is shown that the resulting dispersion relation is an integral equation of the Fredholm type, and yields two general families of stable modes: singular modes whose eigenvalues form a continuous spectrum, and a finite number of discrete global modes. Depending on the value of drag coefficient, stable modes can be over-damped, critically damped, or decaying oscillatory waves. The results of linear perturbation analysis are confirmed through the numerical solution of the fully nonlinear Fokker-Planck equation.
We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow condition s. Protein embedded membranes behave quite differently: by imposing a simple shear flow and sliding the monolayers of the membrane over each other, the motion of protein clusters becomes strongly superdiffusive in the shear direction. In such a circumstance, subdiffusion regime is predominant perpendicular to the flow. We show that superdiffusion is a result of accelerated chaotic motions of protein--lipid complexes within the membrane voids, which are generated by hydrophobic mismatch or the transport of lipids by proteins.
69 - Mir Abbas Jalali 2013
We use the Fokker-Planck equation and model the dispersive dynamics of solid particles in annular protoplanetary disks whose gas component is more massive than the particle phase. We model particle--gas interactions as hard sphere collisions, determi ne the functional form of diffusion coefficients, and show the existence of two global unstable modes in the particle phase. These modes have spiral patterns with the azimuthal wavenumber $m=1$ and rotate slowly. We show that in ring-shaped disks, the phase space density of solid particles increases linearly in time towards an accumulation point near the location of pressure maximum, while instabilities grow exponentially. Therefore, planetesimals and planetary cores can be efficiently produced near the peaks of unstable density waves. In this mechanism, particles migrating towards the accumulation point will not participate in the formation of planets, and should eventually form a debris ring like the main asteroid belt or classical Kuiper belt objects. We present the implications of global instabilities to the formation of ice giants and terrestrial planets in the solar system.
We investigate the stability of the pressure-driven, low-Reynolds flow of Brownian suspensions with spherical particles in microchannels. We find two general families of stable/unstable modes: (i) degenerate modes with symmetric and anti-symmetric pa tterns; (ii) single modes that are either symmetric or anti-symmetric. The concentration profiles of degenerate modes have strong peaks near the channel walls, while single modes diminish there. Once excited, both families would be detectable through high-speed imaging. We find that unstable modes occur in concentrated suspensions whose velocity profiles are sufficiently flattened near the channel centreline. The patterns of growing unstable modes suggest that they are triggered due to Brownian migration of particles between the central bulk that moves with an almost constant velocity, and highly-sheared low-velocity region near the wall. Modes are amplified because shear-induced diffusion cannot efficiently disperse particles from the cavities of the perturbed velocity field.
We study the linear perturbations of collisionless near-Keplerian discs. Such systems are models for debris discs around stars and the stellar discs surrounding supermassive black holes at the centres of galaxies. Using a finite-element method, we so lve the linearized collisionless Boltzmann equation and Poissons equation for a wide range of disc masses and rms orbital eccentricities to obtain the eigenfrequencies and shapes of normal modes. We find that these discs can support large-scale `slow modes, in which the frequency is proportional to the disc mass. Slow modes are present for arbitrarily small disc mass so long as the self-gravity of the disc is the dominant source of apsidal precession. We find that slow modes are of two general types: parent modes and hybrid child modes, the latter arising from resonant interactions between parent modes and singular van Kampen modes. The most prominent slow modes have azimuthal wavenumbers $m=1$ and $m=2$. We illustrate how slow modes in debris discs are excited during a fly-by of a neighbouring star. Many of the non-axisymmetric features seen in debris discs (clumps, eccentricity, spiral waves) that are commonly attributed to planets could instead arise from slow modes; the two hypotheses can be distinguished by long-term measurements of the pattern speed of the features.
We carry out a coarse-grained molecular dynamics simulation of phospholipid vesicles with transmembrane proteins. We measure the mean and Gaussian curvatures of our protein-embedded vesicles and quantitatively show how protein clusters change the sha pes of their host vesicles. The effects of depletion force and vesiculation on protein clustering are also investigated. By increasing the protein concentration, clusters are fragmented to smaller bundles, which are then redistributed to form more symmetric structures corresponding to lower bending energies. Big clusters and highly aspherical vesicles cannot be formed when the fraction of protein to lipid molecules is large.
We describe a new finite element method (FEM) to construct continuous equilibrium distribution functions of stellar systems. The method is a generalization of Schwarzschilds orbit superposition method from the space of discrete functions to continuou s ones. In contrast to Schwarzschilds method, FEM produces a continuous distribution function (DF) and satisfies the intra element continuity and Jeans equations. The method employs two finite-element meshes, one in configuration space and one in action space. The DF is represented by its values at the nodes of the action-space mesh and by interpolating functions inside the elements. The Galerkin projection of all equations that involve the DF leads to a linear system of equations, which can be solved for the nodal values of the DF using linear or quadratic programming, or other optimization methods. We illustrate the superior performance of FEM by constructing ergodic and anisotropic equilibrium DFs for spherical stellar systems (Hernquist models). We also show that explicitly constraining the DF by the Jeans equations leads to smoother and/or more accurate solutions with both Schwarzschilds method and FEM.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا