ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Schwarzschilds method

106   0   0.0 ( 0 )
 نشر من قبل Mir Abbas Jalali
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a new finite element method (FEM) to construct continuous equilibrium distribution functions of stellar systems. The method is a generalization of Schwarzschilds orbit superposition method from the space of discrete functions to continuous ones. In contrast to Schwarzschilds method, FEM produces a continuous distribution function (DF) and satisfies the intra element continuity and Jeans equations. The method employs two finite-element meshes, one in configuration space and one in action space. The DF is represented by its values at the nodes of the action-space mesh and by interpolating functions inside the elements. The Galerkin projection of all equations that involve the DF leads to a linear system of equations, which can be solved for the nodal values of the DF using linear or quadratic programming, or other optimization methods. We illustrate the superior performance of FEM by constructing ergodic and anisotropic equilibrium DFs for spherical stellar systems (Hernquist models). We also show that explicitly constraining the DF by the Jeans equations leads to smoother and/or more accurate solutions with both Schwarzschilds method and FEM.


قيم البحث

اقرأ أيضاً

The structure of interstellar medium can be characterised at large scales in terms of its global statistics (e.g. power spectra) and at small scales by the properties of individual cores. Interest has been increasing in structures at intermediate sca les, resulting in a number of methods being developed for the analysis of filamentary structures. We describe the application of the generic template-matching (TM) method to the analysis of maps. Our aim is to show that it provides a fast and still relatively robust way to identify elongated structures or other image features. We present the implementation of a TM algorithm for map analysis. The results are compared against rolling Hough transform (RHT), one of the methods previously used to identify filamentary structures. We illustrate the method by applying it to Herschel surface brightness data. The performance of the TM method is found to be comparable to that of RHT but TM appears to be more robust regarding the input parameters, for example, those related to the selected spatial scales. Small modifications of TM enable one to target structures at different size and intensity levels. In addition to elongated features, we demonstrate the possibility of using TM to also identify other types of structures. The TM method is a viable tool for data quality control, exploratory data analysis, and even quantitative analysis of structures in image data.
We present a new radiative transfer method (SPH-M1RT) that is coupled dynamically with smoothed particle hydrodynamics (SPH). We implement it in the (task-based parallel) SWIFT galaxy simulation code but it can be straightforwardly implemented in oth er SPH codes. Our moment-based method simultaneously solves the radiation energy and flux equations in SPH, making it adaptive in space and time. We modify the M1 closure relation to stabilize radiation fronts in the optically thin limit. We also introduce anisotropic artificial viscosity and high-order artificial diffusion schemes, which allow the code to handle radiation transport accurately in both the optically thin and optically thick regimes. Non-equilibrium thermo-chemistry is solved using a semi-implicit sub-cycling technique. The computational cost of our method is independent of the number of sources and can be lowered further by using the reduced speed of light approximation. We demonstrate the robustness of our method by applying it to a set of standard tests from the cosmological radiative transfer comparison project of Iliev et al. The SPH-M1RT scheme is well-suited for modelling situations in which numerous sources emit ionising radiation, such as cosmological simulations of galaxy formation or simulations of the interstellar medium.
79 - Jeong-Gyu Kim 2017
We present an implementation of an adaptive ray tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a re cently proposed parallel algorithm that uses non-blocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems including the propagation of radiation in vacuum and the expansions of various types of HII regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to $sim 10^3$ processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is $12%$ when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with that from the M1 closure relation. Although the ART and M1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.
53 - Suchetha Cooray 2020
Photometric surveys have provided incredible amounts of astronomical information in the form of images. However, astronomical images often contain artifacts that can critically hinder scientific analysis by misrepresenting intensities or contaminatin g catalogs as artificial objects. These affected pixels need to be masked and dealt with in any data reduction pipeline. In this paper, we present a flexible, iterative algorithm to recover (unmask) astronomical images where some pixels are lacking. We demonstrate the application of the method on some intensity calibration source images in CO Multi-line Imaging of Nearby Galaxies (COMING) Project conducted using the 45m telescope at Nobeyama Radio Observatory (NRO). The proposed algorithm restored artifacts due to a detector error in the intensity calibration source images. The restored images were used to calibrate 11 out of 147 observed galaxy maps in the survey. The tests show that the algorithm can restore measured intensities at sub 1% error even for noisy images (SNR = 2.4), despite lacking a significant part of the image. We present the formulation of the reconstruction algorithm, discuss its possibilities and limitations for extensions to other astronomical signals and the results of the COMING application.
51 - L. van Sluijs 2018
Occulting galaxy pairs have been used to determine the transmission and dust composition within the foreground galaxy. Observations of the nearly face-on ring-like debris disk around the solar-like star HD 107146 by HST/ACS in 2004 and HST/STIS in 20 11 reveal that the debris ring is occulting an extended background galaxy over the subsequent decades. Our aim is to use 2004 HST observations of this system to model the galaxy and apply this to the 2011 observation in order to measure the transmission of the galaxy through the outer regions of the debris disk. We model the galaxy with an exponential disk and a S{e}rsic pseudo-bulge in the V- and I-band, but irregularities due to small scale structure from star forming regions limits accurate determination of the foreground dust distribution. We show that debris ring transit photometry is feasible for optical depth increases of $Delta tau geq$ 0.04 ($1 sigma$) on tens of au scales the width of the background galaxy { when the 2011 STIS data are compared directly with new HST/STIS observations, instead of the use of a smoothed model as a reference.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا