ترغب بنشر مسار تعليمي؟ اضغط هنا

A resource-adaptive supernet adjusts its subnets for inference to fit the dynamically available resources. In this paper, we propose Prioritized Subnet Sampling to train a resource-adaptive supernet, termed PSS-Net. We maintain multiple subnet pools, each of which stores the information of substantial subnets with similar resource consumption. Considering a resource constraint, subnets conditioned on this resource constraint are sampled from a pre-defined subnet structure space and high-quality ones will be inserted into the corresponding subnet pool. Then, the sampling will gradually be prone to sampling subnets from the subnet pools. Moreover, the one with a better performance metric is assigned with higher priority to train our PSS-Net, if sampling is from a subnet pool. At the end of training, our PSS-Net retains the best subnet in each pool to entitle a fast switch of high-quality subnets for inference when the available resources vary. Experiments on ImageNet using MobileNetV1/V2 show that our PSS-Net can well outperform state-of-the-art resource-adaptive supernets. Our project is at https://github.com/chenbong/PSS-Net.
While post-training quantization receives popularity mostly due to its evasion in accessing the original complete training dataset, its poor performance also stems from this limitation. To alleviate this limitation, in this paper, we leverage the syn thetic data introduced by zero-shot quantization with calibration dataset and we propose a fine-grained data distribution alignment (FDDA) method to boost the performance of post-training quantization. The method is based on two important properties of batch normalization statistics (BNS) we observed in deep layers of the trained network, i.e., inter-class separation and intra-class incohesion. To preserve this fine-grained distribution information: 1) We calculate the per-class BNS of the calibration dataset as the BNS centers of each class and propose a BNS-centralized loss to force the synthetic data distributions of different classes to be close to their own centers. 2) We add Gaussian noise into the centers to imitate the incohesion and propose a BNS-distorted loss to force the synthetic data distribution of the same class to be close to the distorted centers. By introducing these two fine-grained losses, our method shows the state-of-the-art performance on ImageNet, especially when the first and last layers are quantized to low-bit as well. Our project is available at https://github.com/viperit/FDDA.
The mainstream approach for filter pruning is usually either to force a hard-coded importance estimation upon a computation-heavy pretrained model to select important filters, or to impose a hyperparameter-sensitive sparse constraint on the loss obje ctive to regularize the network training. In this paper, we present a novel filter pruning method, dubbed dynamic-coded filter fusion (DCFF), to derive compact CNNs in a computation-economical and regularization-free manner for efficient image classification. Each filter in our DCFF is firstly given an inter-similarity distribution with a temperature parameter as a filter proxy, on top of which, a fresh Kullback-Leibler divergence based dynamic-coded criterion is proposed to evaluate the filter importance. In contrast to simply keeping high-score filters in other methods, we propose the concept of filter fusion, i.e., the weighted averages using the assigned proxies, as our preserved filters. We obtain a one-hot inter-similarity distribution as the temperature parameter approaches infinity. Thus, the relative importance of each filter can vary along with the training of the compact CNN, leading to dynamically changeable fused filters without both the dependency on the pretrained model and the introduction of sparse constraints. Extensive experiments on classification benchmarks demonstrate the superiority of our DCFF over the compared counterparts. For example, our DCFF derives a compact VGGNet-16 with only 72.77M FLOPs and 1.06M parameters while reaching top-1 accuracy of 93.47% on CIFAR-10. A compact ResNet-50 is obtained with 63.8% FLOPs and 58.6% parameter reductions, retaining 75.60% top-1 accuracy on ILSVRC-2012. Our code, narrower models and training logs are available at https://github.com/lmbxmu/DCFF.
Though network sparsity emerges as a promising direction to overcome the drastically increasing size of neural networks, it remains an open problem to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In th is paper, we propose one novel concept of $1times N$ block sparsity pattern (block pruning) to break this limitation. In particular, consecutive $N$ output kernels with the same input channel index are grouped into one block, which serves as a basic pruning granularity of our pruning pattern. Our $1 times N$ sparsity pattern prunes these blocks considered unimportant. We also provide a workflow of filter rearrangement that first rearranges the weight matrix in the output channel dimension to derive more influential blocks for accuracy improvements, and then applies similar rearrangement to the next-layer weights in the input channel dimension to ensure correct convolutional operations. Moreover, the output computation after our $1 times N$ block sparsity can be realized via a parallelized block-wise vectorized operation, leading to significant speedups on general CPUs-based platforms. The efficacy of our pruning pattern is proved with experiments on ILSVRC-2012. For example, in the case of 50% sparsity and $N=4$, our pattern obtains about 3.0% improvements over filter pruning in the top-1 accuracy of MobileNet-V2. Meanwhile, it obtains 56.04ms inference savings on Cortex-A7 CPU over weight pruning. Code is available at https://github.com/lmbxmu/1xN.
Channel Pruning has been long studied to compress CNNs for efficient image classification. Prior works implement channel pruning in an unexplainable manner, which tends to reduce the final classification errors while failing to consider the internal influence of each channel. In this paper, we conduct channel pruning in a white box. Through deep visualization of feature maps activated by different channels, we observe that different channels have a varying contribution to different categories in image classification. Inspired by this, we choose to preserve channels contributing to most categories. Specifically, to model the contribution of each channel to differentiating categories, we develop a class-wise mask for each channel, implemented in a dynamic training manner w.r.t. the input images category. On the basis of the learned class-wise mask, we perform a global voting mechanism to remove channels with less category discrimination. Lastly, a fine-tuning process is conducted to recover the performance of the pruned model. To our best knowledge, it is the first time that CNN interpretability theory is considered to guide channel pruning. Extensive experiments on representative image classification tasks demonstrate the superiority of our White-Box over many state-of-the-arts. For instance, on CIFAR-10, it reduces 65.23% FLOPs with even 0.62% accuracy improvement for ResNet-110. On ILSVRC-2012, White-Box achieves a 45.6% FLOPs reduction with only a small loss of 0.83% in the top-1 accuracy for ResNet-50.
Network pruning is an effective approach to reduce network complexity without performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight tuning or complex search on networks with expanded width, which g reatly limits the applications of network pruning. In this paper, we show that high-performing and sparse sub-networks without the involvement of weight tuning, termed lottery jackpots, exist in pre-trained models with unexpanded width. For example, we obtain a lottery jackpot that has only 10% parameters and still reaches the performance of the original dense VGGNet-19 without any modifications on the pre-trained weights. Furthermore, we observe that the sparse masks derived from many existing pruning criteria have a high overlap with the searched mask of our lottery jackpot, among which, the magnitude-based pruning results in the most similar mask with ours. Based on this insight, we initialize our sparse mask using the magnitude pruning, resulting in at least 3x cost reduction on the lottery jackpot search while achieves comparable or even better performance. Specifically, our magnitude-based lottery jackpot removes 90% weights in the ResNet-50, while easily obtains more than 70% top-1 accuracy using only 10 searching epochs on ImageNet.
Few-shot class-incremental learning (FSCIL), which targets at continuously expanding models representation capacity under few supervisions, is an important yet challenging problem. On the one hand, when fitting new tasks (novel classes), features tra ined on old tasks (old classes) could significantly drift, causing catastrophic forgetting. On the other hand, training the large amount of model parameters with few-shot novel-class examples leads to model over-fitting. In this paper, we propose a learnable expansion-and-compression network (LEC-Net), with the aim to simultaneously solve catastrophic forgetting and model over-fitting problems in a unified framework. By tentatively expanding network nodes, LEC-Net enlarges the representation capacity of features, alleviating feature drift of old network from the perspective of model regularization. By compressing the expanded network nodes, LEC-Net purses minimal increase of model parameters, alleviating over-fitting of the expanded network from a perspective of compact representation. Experiments on the CUB/CIFAR-100 datasets show that LEC-Net improves the baseline by 5~7% while outperforms the state-of-the-art by 5~6%. LEC-Net also demonstrates the potential to be a general incremental learning approach with dynamic model expansion capability.
Existing online knowledge distillation approaches either adopt the student with the best performance or construct an ensemble model for better holistic performance. However, the former strategy ignores other students information, while the latter inc reases the computational complexity. In this paper, we propose a novel method for online knowledge distillation, termed FFSD, which comprises two key components: Feature Fusion and Self-Distillation, towards solving the above problems in a unified framework. Different from previous works, where all students are treated equally, the proposed FFSD splits them into a student leader and a common student set. Then, the feature fusion module converts the concatenation of feature maps from all common students into a fused feature map. The fused representation is used to assist the learning of the student leader. To enable the student leader to absorb more diverse information, we design an enhancement strategy to increase the diversity among students. Besides, a self-distillation module is adopted to convert the feature map of deeper layers into a shallower one. Then, the shallower layers are encouraged to mimic the transformed feature maps of the deeper layers, which helps the students to generalize better. After training, we simply adopt the student leader, which achieves superior performance, over the common students, without increasing the storage or inference cost. Extensive experiments on CIFAR-100 and ImageNet demonstrate the superiority of our FFSD over existing works. The code is available at https://github.com/SJLeo/FFSD.
Binary neural networks (BNNs) have received increasing attention due to their superior reductions of computation and memory. Most existing works focus on either lessening the quantization error by minimizing the gap between the full-precision weights and their binarization or designing a gradient approximation to mitigate the gradient mismatch, while leaving the dead weights untouched. This leads to slow convergence when training BNNs. In this paper, for the first time, we explore the influence of dead weights which refer to a group of weights that are barely updated during the training of BNNs, and then introduce rectified clamp unit (ReCU) to revive the dead weights for updating. We prove that reviving the dead weights by ReCU can result in a smaller quantization error. Besides, we also take into account the information entropy of the weights, and then mathematically analyze why the weight standardization can benefit BNNs. We demonstrate the inherent contradiction between minimizing the quantization error and maximizing the information entropy, and then propose an adaptive exponential scheduler to identify the range of the dead weights. By considering the dead weights, our method offers not only faster BNN training, but also state-of-the-art performance on CIFAR-10 and ImageNet, compared with recent methods. Code can be available at https://github.com/z-hXu/ReCU.
Binary neural networks (BNNs) have attracted broad research interest due to their efficient storage and computational ability. Nevertheless, a significant challenge of BNNs lies in handling discrete constraints while ensuring bit entropy maximization , which typically makes their weight optimization very difficult. Existing methods relax the learning using the sign function, which simply encodes positive weights into +1s, and -1s otherwise. Alternatively, we formulate an angle alignment objective to constrain the weight binarization to {0,+1} to solve the challenge. In this paper, we show that our weight binarization provides an analytical solution by encoding high-magnitude weights into +1s, and 0s otherwise. Therefore, a high-quality discrete solution is established in a computationally efficient manner without the sign function. We prove that the learned weights of binarized networks roughly follow a Laplacian distribution that does not allow entropy maximization, and further demonstrate that it can be effectively solved by simply removing the $ell_2$ regularization during network training. Our method, dubbed sign-to-magnitude network binarization (SiMaN), is evaluated on CIFAR-10 and ImageNet, demonstrating its superiority over the sign-based state-of-the-arts. Our source code, experimental settings, training logs and binary models are available at https://github.com/lmbxmu/SiMaN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا