ترغب بنشر مسار تعليمي؟ اضغط هنا

Distilling a Powerful Student Model via Online Knowledge Distillation

115   0   0.0 ( 0 )
 نشر من قبل Shaojie Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing online knowledge distillation approaches either adopt the student with the best performance or construct an ensemble model for better holistic performance. However, the former strategy ignores other students information, while the latter increases the computational complexity. In this paper, we propose a novel method for online knowledge distillation, termed FFSD, which comprises two key components: Feature Fusion and Self-Distillation, towards solving the above problems in a unified framework. Different from previous works, where all students are treated equally, the proposed FFSD splits them into a student leader and a common student set. Then, the feature fusion module converts the concatenation of feature maps from all common students into a fused feature map. The fused representation is used to assist the learning of the student leader. To enable the student leader to absorb more diverse information, we design an enhancement strategy to increase the diversity among students. Besides, a self-distillation module is adopted to convert the feature map of deeper layers into a shallower one. Then, the shallower layers are encouraged to mimic the transformed feature maps of the deeper layers, which helps the students to generalize better. After training, we simply adopt the student leader, which achieves superior performance, over the common students, without increasing the storage or inference cost. Extensive experiments on CIFAR-100 and ImageNet demonstrate the superiority of our FFSD over existing works. The code is available at https://github.com/SJLeo/FFSD.



قيم البحث

اقرأ أيضاً

Knowledge distillation transfers knowledge from the teacher network to the student one, with the goal of greatly improving the performance of the student network. Previous methods mostly focus on proposing feature transformation and loss functions be tween the same levels features to improve the effectiveness. We differently study the factor of connection path cross levels between teacher and student networks, and reveal its great importance. For the first time in knowledge distillation, cross-stage connection paths are proposed. Our new review mechanism is effective and structurally simple. Our finally designed nested and compact framework requires negligible computation overhead, and outperforms other methods on a variety of tasks. We apply our method to classification, object detection, and instance segmentation tasks. All of them witness significant student network performance improvement. Code is available at https://github.com/Jia-Research-Lab/ReviewKD
This paper presents a novel knowledge distillation based model compression framework consisting of a student ensemble. It enables distillation of simultaneously learnt ensemble knowledge onto each of the compressed student models. Each model learns u nique representations from the data distribution due to its distinct architecture. This helps the ensemble generalize better by combining every models knowledge. The distilled students and ensemble teacher are trained simultaneously without requiring any pretrained weights. Moreover, our proposed method can deliver multi-compressed students with single training, which is efficient and flexible for different scenarios. We provide comprehensive experiments using state-of-the-art classification models to validate our frameworks effectiveness. Notably, using our framework a 97% compressed ResNet110 student model managed to produce a 10.64% relative accuracy gain over its individual baseline training on CIFAR100 dataset. Similarly a 95% compressed DenseNet-BC(k=12) model managed a 8.17% relative accuracy gain.
Despite exciting progress in pre-training for visual-linguistic (VL) representations, very few aspire to a small VL model. In this paper, we study knowledge distillation (KD) to effectively compress a transformer-based large VL model into a small VL model. The major challenge arises from the inconsistent regional visual tokens extracted from different detectors of Teacher and Student, resulting in the misalignment of hidden representations and attention distributions. To address the problem, we retrain and adapt the Teacher by using the same region proposals from Students detector while the features are from Teachers own object detector. With aligned network inputs, the adapted Teacher is capable of transferring the knowledge through the intermediate representations. Specifically, we use the mean square error loss to mimic the attention distribution inside the transformer block and present a token-wise noise contrastive loss to align the hidden state by contrasting with negative representations stored in a sample queue. To this end, we show that our proposed distillation significantly improves the performance of small VL models on image captioning and visual question answering tasks. It reaches 120.8 in CIDEr score on COCO captioning, an improvement of 5.1 over its non-distilled counterpart; and an accuracy of 69.8 on VQA 2.0, a 0.8 gain from the baseline. Our extensive experiments and ablations confirm the effectiveness of VL distillation in both pre-training and fine-tuning stages.
In recent years, many explanation methods have been proposed to explain individual classifications of deep neural networks. However, how to leverage the created explanations to improve the learning process has been less explored. As the privileged in formation, the explanations of a model can be used to guide the learning process of the model itself. In the community, another intensively investigated privileged information used to guide the training of a model is the knowledge from a powerful teacher model. The goal of this work is to leverage the self-explanation to improve the learning process by borrowing ideas from knowledge distillation. We start by investigating the effective components of the knowledge transferred from the teacher network to the student network. Our investigation reveals that both the responses in non-ground-truth classes and class-similarity information in teachers outputs contribute to the success of the knowledge distillation. Motivated by the conclusion, we propose an implementation of introspective learning by distilling knowledge from online self-explanations. The models trained with the introspective learning procedure outperform the ones trained with the standard learning procedure, as well as the ones trained with different regularization methods. When compared to the models learned from peer networks or teacher networks, our models also show competitive performance and requires neither peers nor teachers.
We propose a learning framework named Feature Fusion Learning (FFL) that efficiently trains a powerful classifier through a fusion module which combines the feature maps generated from parallel neural networks. Specifically, we train a number of para llel neural networks as sub-networks, then we combine the feature maps from each sub-network using a fusion module to create a more meaningful feature map. The fused feature map is passed into the fused classifier for overall classification. Unlike existing feature fusion methods, in our framework, an ensemble of sub-network classifiers transfers its knowledge to the fused classifier and then the fused classifier delivers its knowledge back to each sub-network, mutually teaching one another in an online-knowledge distillation manner. This mutually teaching system not only improves the performance of the fused classifier but also obtains performance gain in each sub-network. Moreover, our model is more beneficial because different types of network can be used for each sub-network. We have performed a variety of experiments on multiple datasets such as CIFAR-10, CIFAR-100 and ImageNet and proved that our method is more effective than other alternative methods in terms of performance of both sub-networks and the fused classifier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا