ترغب بنشر مسار تعليمي؟ اضغط هنا

156 - Davide Fermi 2015
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we compute the renormalized vacuum expectation value of several observables (in particular, of the stress-energy tensor and of the total energy) for a massless scalar field confined within a rectangular box of arbitrary dimension.
197 - Davide Fermi 2015
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we renormalize the vacuum expectation value of the stress-energy tensor (and of the total energy) for a scalar field in presence of an external harmonic potential.
119 - Davide Fermi 2015
In Part I of this series of papers we have described a general formalism to compute the vacuum effects of a scalar field via local (or global) zeta regularization. In the present Part II we exemplify the general formalism in a number of cases which c an be solved explicitly by analytical means. More in detail we deal with configurations involving parallel or perpendicular planes and we also discuss the case of a three-dimensional wedge.
97 - Davide Fermi 2015
This is the first one of a series of papers about zeta regularization of the divergences appearing in the vacuum expectation value (VEV) of several local and global observables in quantum field theory. More precisely we consider a quantized, neutral scalar field on a domain in any spatial dimension, with arbitrary boundary conditions and, possibly, in presence of an external classical potential. We analyze, in particular, the VEV of the stress-energy tensor, the corresponding boundary forces and the total energy, thus taking into account both local and global aspects of the Casimir effect. In comparison with the wide existing literature on these subjects, we try to develop a more systematic approach, allowing to treat specific configurations by mere application of a general machinery. The present Part I is mainly devoted to setting up this general framework; at the end of the paper, this is exemplified in a very simple case. In Parts II, III and IV we will consider more engaging applications, indicated in the Introduction of the present work.
This volume contains the proceedings of the First Workshop on Logics and Model-checking for self-* systems (MOD* 2014). The worshop took place in Bertinoro, Italy, on 12th of September 2014, and was a satellite event of iFM 2014 (the 11th Internation al Conference on Integrated Formal Methods). The workshop focuses on demonstrating the applicability of Formal Methods on modern complex systems with a high degree of self-adaptivity and reconfigurability, by bringing together researchers and practitioners with the goal of pushing forward the state of the art on logics and model checking.
In this work we report the appearence of a large perpendicular magnetic anisotropy (PMA) in Fe$_{1-x}$Ga$_x$ thin films grown onto ZnSe/GaAs(100). This arising anisotropy is related to the tetragonal metastable phase in as-grown samples recently repo rted [M. Eddrief {it et al.}, Phys. Rev. B {bf 84}, 161410 (2011)]. By means of ferromagnetic resonance studies we measured PMA values up to $sim$ 5$times$10$^5$ J/m$^3$. PMA vanishes when the cubic structure is recovered upon annealing at 300$^{circ}$C. Despite the important values of the magnetoelastic constants measured via the cantilever method, the consequent magnetoelastic contribution to PMA is not enough to explain the observed anisotropy values in the distorted state. {it Ab initio} calculations show that the chemical ordering plays a crucial role in the appearance of PMA. Through a phenomenological model we are able to explain that an excess of next nearest neighbour Ga pairs (B$_2$-like ordering) along the perpendicular direction arises as the source of PMA in Fe$_{1-x}$Ga$_x$ thin films.
We show that a formalism proposed by Creutz to evaluate Grassmann integrals provides an algorithm of complexity $O(2^n n^3)$ to compute the generating function for the sum of the permanental minors of a matrix of order $n$. This algorithm improves ov er the Brualdi-Ryser formula, whose complexity is at least $O(2^{frac{5n}{2}})$. In the case of a banded matrix with band width $w$ and rank $n$ the complexity is $O(2^{min(2w, n)} (w + 1) n^2)$. Related algorithms for the matching and independence polynomials of graphs are presented.
230 - Carlo Morosi 2014
The main result of [C. Morosi and L. Pizzocchero, Nonlinear Analysis, 2012] is presented in a variant, based on a C^infinity formulation of the Cauchy problem; in this approach, the a posteriori analysis of an approximate solution gives a bound on th e Sobolev distance of any order between the exact and the approximate solution.
Modern botnets rely on domain-generation algorithms (DGAs) to build resilient command-and-control infrastructures. Recent works focus on recognizing automatically generated domains (AGDs) from DNS traffic, which potentially allows to identify previou sly unknown AGDs to hinder or disrupt botnets communication capabilities. The state-of-the-art approaches require to deploy low-level DNS sensors to access data whose collection poses practical and privacy issues, making their adoption problematic. We propose a mechanism that overcomes the above limitations by analyzing DNS traffic data through a combination of linguistic and IP-based features of suspicious domains. In this way, we are able to identify AGD names, characterize their DGAs and isolate logical groups of domains that represent the respective botnets. Moreover, our system enriches these groups with new, previously unknown AGD names, and produce novel knowledge about the evolving behavior of each tracked botnet. We used our system in real-world settings, to help researchers that requested intelligence on suspicious domains and were able to label them as belonging to the correct botnet automatically. Additionally, we ran an evaluation on 1,153,516 domains, including AGDs from both modern (e.g., Bamital) and traditional (e.g., Conficker, Torpig) botnets. Our approach correctly isolated families of AGDs that belonged to distinct DGAs, and set automatically generated from non-automatically generated domains apart in 94.8 percent of the cases.
71 - Chiara Damiani 2013
An extensive rewiring of cell metabolism supports enhanced proliferation in cancer cells. We propose a systems level approach to describe this phenomenon based on Flux Balance Analysis (FBA). The approach does not explicit a cell biomass formation re action to be maximized, but takes into account an ensemble of alternative flux distributions that match the cancer metabolic rewiring (CMR) phenotype description. The underlying concept is that the analysis the common/distinguishing properties of the ensemble can provide indications on how CMR is achieved and sustained and thus on how it can be controlled.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا