ﻻ يوجد ملخص باللغة العربية
We show that a formalism proposed by Creutz to evaluate Grassmann integrals provides an algorithm of complexity $O(2^n n^3)$ to compute the generating function for the sum of the permanental minors of a matrix of order $n$. This algorithm improves over the Brualdi-Ryser formula, whose complexity is at least $O(2^{frac{5n}{2}})$. In the case of a banded matrix with band width $w$ and rank $n$ the complexity is $O(2^{min(2w, n)} (w + 1) n^2)$. Related algorithms for the matching and independence polynomials of graphs are presented.
The definitions of para-Grassmann variables and q-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a opera
We construct a new example of the spinning-particle model without Grassmann variables. The spin degrees of freedom are described on the base of an inner anti-de Sitter space. This produces both $Gamma^mu$ and $Gamma^{mu u}$,-matrices in the course of
We study the homology and cohomology groups of super Lie algebra of supersymmetries and of super Poincare Lie algebra in various dimensions. We give complete answers for (non-extended) supersymmetry in all dimensions $leq 11$. For dimensions $D=10,11
We define a supersymmetric quantum mechanics of fermions that take values in a simple Lie algebra. We summarize what is known about the spectrum and eigenspaces of the Laplacian which corresponds to the Koszul differential d. Firstly, we concentrate
We study the homology and cohomology groups of super Lie algebra of supersymmetries and of super Poincare algebra. We discuss in detail the calculation in dimensions D=10 and D=6. Our methods can be applied to extended supersymmetry algebra and to other dimensions.