ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the fixed angle inverse scattering problem of determining a sound speed from scattering measurements corresponding to a single incident wave. The main result shows that a sound speed close to constant can be stably determined by just one mea surement. Our method is based on studying the linearized problem, which turns out to be related to the acoustic problem in photoacoustic imaging. We adapt the modified time-reversal method from [P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems 25 (2009), 075011] to solve the linearized problem in a stable way, and use this to give a local uniqueness result for the nonlinear inverse problem.
We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero f requency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from the theory of free boundary problems.
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. By using a fractional order adaptation of this method, we show that the results of [LLLS20a, LLLS20b] remain valid for general power type nonlinearities.
In this article we present three robust instability mechanisms for linear and nonlinear inverse problems. All of these are based on strong compression properties (in the sense of singular value or entropy number bounds) which we deduce through either strong global smoothing, only weak global smoothing or microlocal smoothing for the corresponding forward operators, respectively. As applications we for instance present new instability arguments for unique continuation, for the backward heat equation and for linear and nonlinear Calderon type problems in general geometries, possibly in the presence of rough coefficients. Our instability mechanisms could also be of interest in the context of control theory, providing estimates on the cost of (approximate) controllability in rather general settings.
We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measur ements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.
In this article we study the linearized anisotropic Calderon problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a complete set. We assume that the manifold is transversally anisotropic and that the transversal manifold is real analytic and satisfies a geometric condition related to the geometry of pairs of intersecting geodesics. In this case, we solve the linearized anisotropic Calderon problem. The geometric condition does not involve the injectivity of the geodesic X-ray transform. Crucial ingredients in the proof of our result are the construction of Gaussian beam quasimodes on the transversal manifold, with exponentially small errors, as well as the FBI transform characterization of the analytic wave front set.
179 - Shiqi Ma , Mikko Salo 2020
We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a symmetry assumption on the me tric, we obtain uniqueness and stability results in the inverse scattering problem for a potential with data generated by two incident waves from opposite directions. Further, similar results are given using one measurement provided the potential also satisfies a symmetry assumption. This work extends the results of [23,24] from the Euclidean case to certain Riemannian metrics.
This paper settles the question of injectivity of the non-Abelian X-ray transform on simple surfaces for the general linear group of invertible complex matrices. The main idea is to use a factorization theorem for Loop Groups to reduce to the setting of the unitary group, where energy methods and scalar holomorphic integrating factors can be used. We also show that our main theorem extends to cover the case of an arbitrary Lie group.
We consider inverse boundary value problems for general real principal type differential operators. The first results state that the Cauchy data set uniquely determines the scattering relation of the operator and bicharacteristic ray transforms of lo wer order coefficients. We also give two different boundary determination methods for general operators, and prove global uniqueness results for determining coefficients in nonlinear real principal type equations. The article presents a unified approach for treating inverse boundary problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.
We consider the geodesic X-ray transform acting on solenoidal tensor fields on a compact simply connected manifold with strictly convex boundary and non-positive curvature. We establish a stability estimate of the form $L^2mapsto H^{1/2}_{T}$, where the $H^{1/2}_{T}$-space is defined using the natural parametrization of geodesics as initial boundary points and incoming directions (fan-beam geometry); only tangential derivatives at the boundary are used. The proof is based on the Pestov identity with boundary term localized in frequency.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا