ترغب بنشر مسار تعليمي؟ اضغط هنا

Fixed angle inverse scattering for sound speeds close to constant

217   0   0.0 ( 0 )
 نشر من قبل Shiqi Ma
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the fixed angle inverse scattering problem of determining a sound speed from scattering measurements corresponding to a single incident wave. The main result shows that a sound speed close to constant can be stably determined by just one measurement. Our method is based on studying the linearized problem, which turns out to be related to the acoustic problem in photoacoustic imaging. We adapt the modified time-reversal method from [P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems 25 (2009), 075011] to solve the linearized problem in a stable way, and use this to give a local uniqueness result for the nonlinear inverse problem.

قيم البحث

اقرأ أيضاً

179 - Shiqi Ma , Mikko Salo 2020
We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a symmetry assumption on the me tric, we obtain uniqueness and stability results in the inverse scattering problem for a potential with data generated by two incident waves from opposite directions. Further, similar results are given using one measurement provided the potential also satisfies a symmetry assumption. This work extends the results of [23,24] from the Euclidean case to certain Riemannian metrics.
We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measur ements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.
This paper analyzes inverse scattering for the one-dimensional Helmholtz equation in the case where the wave speed is piecewise constant. Scattering data recorded for an arbitrarily small interval of frequencies is shown to determine the wave speed u niquely, and a direct reconstruction algorithm is presented. The algorithm is exact provided data is recorded for a sufficiently wide range of frequencies and the jump points of the wave speed are equally spaced with respect to travel time. Numerical examples show that the algorithm works also in the general case of arbitrary wave speed (either with jumps or continuously varying etc.) giving progressively more accurate approximations as the range of recorded frequencies increases. A key underlying theoretical insight is to associate scattering data to compositions of automorphisms of the unit disk, which are in turn related to orthogonal polynomials on the unit circle. The algorithm exploits the three-term recurrence of orthogonal polynomials to reduce the required computation.
In this paper we introduce the randomised stability constant for abstract inverse problems, as a generalisation of the randomised observability constant, which was studied in the context of observability inequalities for the linear wave equation. We study the main properties of the randomised stability constant and discuss the implications for the practical inversion, which are not straightforward.
In this paper we consider an inverse problem for the $n$-dimensional random Schr{o}dinger equation $(Delta-q+k^2)u = 0$. We study the scattering of plane waves in the presence of a potential $q$ which is assumed to be a Gaussian random function such that its covariance is described by a pseudodifferential operator. Our main result is as follows: given the backscattered far field, obtained from a single realization of the random potential $q$, we uniquely determine the principal symbol of the covariance operator of $q$. Especially, for $n=3$ this result is obtained for the full non-linear inverse backscattering problem. Finally, we present a physical scaling regime where the method is of practical importance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا