ترغب بنشر مسار تعليمي؟ اضغط هنا

This work presents a sensitivity study of a reactor liquid scintillator detector to three kinds of dark bosons with masses below 1 MeV, such as dark photons, axion-like particles and light scalar bosons. The JUNO-TAO detector with Taishan nuclear rea ctor is taken as a reference. With proposed 180 days data taking, the sensitivity to the dark bosons can reach $sim10^{-5}$ 95%C.L. for the optimized signal to background ratio for the electron coupling constant $it{g_X} $ through inverse Compton-like scattering. The background systematic uncertainty presents as the main limiting factor for the further sensitivity improvement. Additionally the differential and the inverse differential cross sections have been derived for all three boson types and their interactions with electrons in liquid scintillator.
The existence of CP-violation in the leptonic sector is one of the most important issues for modern science. Neutrino physics is a key to the solution of this problem. JUNO (under construction) is the near future of neutrino physics. However CP-viola tion is not a priority for the current scientific program. We estimate the capability of $delta_{rm CP}$ measurement, assuming a combination of the JUNO detector and a superconductive cyclotron as the antineutrino source. This method of measuring CP-violation is an alternative to conventional beam experiments. A significance level of 3$sigma$ can be reached for 22% of the $delta_{rm CP}$ range. The accuracy of measurement lies between 8$^{rm o}$ and 22$^{rm o}$. It is shown that the dominant influence on the result is the uncertainty in the mixing angle $Theta_{23}$.
56 - Mikhail Smirnov 2013
Tetragonal tungsten bronze (TTB) oxides are one of the most important classes of ferroelectrics. Many of these framework structures undergo ferroelastic transformations related to octahedron tilting deformations. Such tilting deformations are closely related to the Rigid Unit Modes (RUMs). This paper discusses the whole set of RUMs in an ideal TTB lattice and possible crystal structures which can emerge owing to the condensation of some of them. Analysis of available experimental data for the TTB-like niobates lends credence to the obtained theoretical predictions.
This article considers a model for alternative processes for securities prices and compares this model with actual return data of several securities. The distributions of returns that appear in the model can be Gaussian as well as non-Gaussian; in pa rticular they may have two peaks. We consider a discrete Markov chain model. This model in some aspects is similar to well-known Ising model describing ferromagnetics. Namely we consider a set of N investors, each of whom has either bullish or bearish opinion, denoted by plus or minus respectively. At every time step each of N investors can change his/her sign. The probability of a plus becoming a minus and the probability of a minus becoming a plus depends only on the bullish sentiment described as the number of bullish investors among the total of N investors. The number of bullish investors then forms a Markov chain whose transition matrix is calculated explicitly. The transition matrix of that chain is ergodic and any initial distribution of bullish investors converges to stationary. Stationary distributions of bullish investors in this Markov chain model are similar to continuous distributions of the theory of social imitation of Callen and Shapero. Distributions obtained this way can represent 3 types of market behavior: one-peaked distribution that is close to Gaussian, transition market (flattening of the top), and two-peaked distribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا