ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons i n the first model are shown to deviate significantly from ansatze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.
101 - Mike Gillard 2010
The Aratyn-Ferreira-Zimerman (AFZ) model is a conformal field theory in three-dimensional space. It has solutions that are topological solitons classified by an integer-valued Hopf index. There exist infinitely many axial solutions which have been fo und analytically. Axial, knot and linked solitons are found numerically to be static solutions using a modified volume preserving flow for Hopf index one to eight, allowing for comparison with other Hopf soliton models. Solutions include a static trefoil knot at Hopf index five. A one-parameter family of conformal Skyrme-Faddeev (CSF) models, consisting of linear combinations of the Nicole and AFZ models, are also investigated numerically. The transition of solutions for Hopf index four is mapped across these models. A topological change between linked and axial solutions occurs, with fewer models permitting axial solitons than linked solitons at Hopf index four.
The Nicole model is a conformal field theory in three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to nu merically construct soliton solutions for all Hopf charges from one to eight. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than two and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in the two theories.
We study configurations of intersecting domain walls in a Wess-Zumino model with three vacua. We introduce a volume-preserving flow and show that its static solutions are configurations of intersecting domain walls that form double bubbles, that is, minimal area surfaces which enclose and separate two prescribed volumes. To illustrate this field theory approach to double bubbles, we use domain walls to reconstruct the phase diagram for double bubbles in the flat square two-torus and also construct all known examples of double bubbles in the flat cubic three-torus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا