ﻻ يوجد ملخص باللغة العربية
Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansatze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.
We consider gauged skyrmions with boundary conditions which break the gauge from $mathrm{SU}(2)$ to $mathrm{U}(1)$ in models derived from Yang-Mills theory. After deriving general topological energy bounds, we approximate charge $1$ energy minimisers
In the Skyrme model atomic nuclei are modelled as quantized soliton solutions in a nonlinear field theory of pions. The mass number is given by the conserved topological charge $B$ of the solitons. Conventionally, Skyrmions are semiclassically quanti
We consider the rigid body quantization of Skyrmions with topological charges 1 to 8, as approximated by the rational map ansatz. Novel, general expressions for the elements of the inertia tensors, in terms of the approximating rational map, are pres
We compute the nuclear spin-orbit coupling from the Skyrme model. Previous attempts to do this were based on the product ansatz, and as such were limited to a system of two well-separated nuclei. Our calculation utilises a new method, and is applicab
The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertai