ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we propose a new algorithm for recovery of low-rank matrices from compressed linear measurements. The underlying idea of this algorithm is to closely approximate the rank function with a smooth function of singular values, and then min imize the resulting approximation subject to the linear constraints. The accuracy of the approximation is controlled via a scaling parameter $delta$, where a smaller $delta$ corresponds to a more accurate fitting. The consequent optimization problem for any finite $delta$ is nonconvex. Therefore, in order to decrease the risk of ending up in local minima, a series of optimizations is performed, starting with optimizing a rough approximation (a large $delta$) and followed by successively optimizing finer approximations of the rank with smaller $delta$s. To solve the optimization problem for any $delta > 0$, it is converted to a new program in which the cost is a function of two auxiliary positive semidefinete variables. The paper shows that this new program is concave and applies a majorize-minimize technique to solve it which, in turn, leads to a few convex optimization iterations. This optimization scheme is also equivalent to a reweighted Nuclear Norm Minimization (NNM), where weighting update depends on the used approximating function. For any $delta > 0$, we derive a necessary and sufficient condition for the exact recovery which are weaker than those corresponding to NNM. On the numerical side, the proposed algorithm is compared to NNM and a reweighted NNM in solving affine rank minimization and matrix completion problems showing its considerable and consistent superiority in terms of success rate, especially, when the number of measurements decreases toward the lower-bound for the unique representation.
We study a two-user state-dependent generalized multiple-access channel (GMAC) with correlated states. It is assumed that each encoder has emph{noncausal} access to channel state information (CSI). We develop an achievable rate region by employing ra te-splitting, block Markov encoding, Gelfand--Pinsker multicoding, superposition coding and joint typicality decoding. In the proposed scheme, the encoders use a partial decoding strategy to collaborate in the next block, and the receiver uses a backward decoding strategy with joint unique decoding at each stage. Our achievable rate region includes several previously known regions proposed in the literature for different scenarios of multiple-access and relay channels. Then, we consider two Gaussian GMACs with additive interference. In the first model, we assume that the interference is known noncausally at both of the encoders and construct a multi-layer Costa precoding scheme that removes emph{completely} the effect of the interference. In the second model, we consider a doubly dirty Gaussian GMAC in which each of interferences is known noncausally only at one encoder. We derive an inner bound and analyze the achievable rate region for the latter model and interestingly prove that if one of the encoders knows the full CSI, there exists an achievable rate region which is emph{independent} of the power of interference.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا