ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a formal demonstration that light can simultaneously exhibit a superfluid behavior and spatial long-range order when propagating in a photonic crystal with self-focussing nonlinearity. In this way, light presents the distinguishing feature s of matter in a supersolid phase. We show that this supersolid phase provides the stability conditions for nonlinear Bloch waves and, at the same time, permits the existence of topological solitons or defects for the envelope of these waves. We use a condensed matter analysis instead of a standard nonlinear optics approach and provide numerical evidence of these theoretical findings.
We analyze the role of impurities in the fractional quantum Hall effect using a highly controllable system of ultracold atoms. We investigate the mechanism responsible for the formation of plateaux in the resistivity/conductivity as a function of the applied magnetic field in the lowest Landau level regime. To this aim, we consider an impurity immersed in a small cloud of an ultracold quantum Bose gas subjected to an artificial magnetic field. We consider scenarios corresponding to experimentally realistic systems with gauge fields induced either by rotation or by appropriately designed laser fields. Systems of this kind are adequate to simulate quantum Hall effects in ultracold atom setups. We use exact diagonalization for few atoms and, to emulate transport equations, we analyze the time evolution of the system under a periodic perturbation. We provide a theoretical proposal to detect the up-to-now elusive presence of strongly correlated states related to fractional filling factors in the context of ultracold atoms. We analyze the conditions under which these strongly correlated states are associated with the presence of the resistivity/conductivity plateaux. Our main result is the presence of a plateau in a region, where the transfer between localized and non-localized particles takes place, as a necessary condition to maintain a constant value of the resistivity/conductivity as the magnetic field increases.
We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a harmonic potential. Using exact numerical diagonalization we are able to fully explore the dynamical evolution when the interaction between the two distinct species is suddenly switched on (quenched). We examine the behavior of the densities, the entanglement, the Loschmidt echo and the spectral function for a large range of inter-species interactions and find that even in such small systems evidence of Andersons orthogonality catastrophe can be witnessed.
We determine the functional behavior near the discrete rotational symmetry axis of discrete vortices of the nonlinear Schrodinger equation. We show that these solutions present a central phase singularity whose charge is restricted by symmetry argume nts. Consequently, we demonstrate that the existence of high-charged discrete vortices is related to the presence of other off-axis phase singularities, whose positions and charges are also restricted by symmetry arguments. To illustrate our theoretical results, we offer two numerical examples of high-charged discrete vortices in photonic crystal fibers showing hexagonal discrete rotational invariance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا