ترغب بنشر مسار تعليمي؟ اضغط هنا

We work out the effective scaling approach to frictionless quantum quenches in a one-dimensional Bose gas trapped in a harmonic trap. The effective scaling approach produces an auxiliary equation for the scaling parameter interpolating between the no ninteracting and the Thomas-Fermi limits. This allows us to implement a frictionless quench by engineering inversely the smooth trap frequency, as compared to the two-jump trajectory. Our result is beneficial to design the shortcut-to-adiabaticity expansion of trapped Bose gases for arbitrary values of interaction, and can be directly extended to the three-dimensional case.
We theoretically investigate the self-evaporation dynamics of quantum droplets in a 41K-87Rb mixture, in free-space. The dynamical formation of the droplet and the effects related to the presence of three-body losses are analyzed by means of numerica l simulations. We identify a regime of parameters allowing for the observation of the droplet self-evaporation in a feasible experimental setup.
We compare the exact evolution of an expanding three-dimensional Bose-Einstein condensate with that obtained from the effective scaling approach introduced in D. Guery-Odelin [Phys. Rev. A 66, 033613 (2002)]. This approach, which consists in looking for self-similar solutions to be satisfied on average, is tested here in different geometries and configurations. We find that, in case of almost isotropic traps, the effective scaling reproduces with high accuracy the exact evolution dictated by the Gross-Pitaevskii equation for arbitrary values of the interactions, in agreement with the proof-of-concept of M. Modugno, G. Pagnini, and M. A. Valle-Basagoiti [Phys. Rev. A 97, 043604 (2018)]. Conversely, it is shown that the hypothesis of universal self-similarity breaks down in case of strong anisotropies and trapped geometries.
We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e. by integrating over the coordinates. A direct comparison with the solut ion of the Gross-Pitaevskii equation shows that the effective scaling reproduces with great accuracy the exact evolution - the actual wave function is reproduced with a fidelity close to unity - for arbitrary values of the interactions. This result represents a proof-of-concept of the effectiveness of the scaling ansatz, which has been used in different forms in the literature but never compared with the exact evolution.
We investigate the correspondence between the tight-binding Floquet Hamiltonian of a periodically modulated honeycomb lattice and the Haldane model. We show that - though the two systems share the same topological phase diagram, as reported in a brea kthrough experiment with ultracold atoms in a stretched honeycomb lattice [Jotzu et al., Nature 515, 237 (2014)] - the corresponding Hamiltonians are not equivalent, the one of the shaken lattice presenting a much richer structure.
Tight-binding models for ultracold atoms in optical lattices can be properly defined by using the concept of maximally localized Wannier functions for composite bands. The basic principles of this approach are reviewed here, along with different appl ications to lattice potentials with two minima per unit cell, in one and two spatial dimensions. Two independent methods for computing the tight-binding coefficients - one ab initio, based on the maximally localized Wannier functions, the other through analytic expressions in terms of the energy spectrum - are considered. In the one dimensional case, where the tight-binding coefficients can be obtained by designing a specific gauge transformation, we consider both the case of quasi resonance between the two lowest bands, and that between s and p orbitals. In the latter case, the role of the Wannier functions in the derivation of an effective Dirac equation is also reviewed. Then, we consider the case of a two dimensional honeycomb potential, with particular emphasis on the Haldane model, its phase diagram, and the breakdown of the Peierls substitution. Tunable honeycomb lattices, characterized by movable Dirac points, are also considered. Finally, general considerations for dealing with the interaction terms are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا