ترغب بنشر مسار تعليمي؟ اضغط هنا

Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history, and may contain faint, extended components missed in galaxy point source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR), or alternately, intra-halo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.1 and 1.6 micrometers. The observed fluctuations exceed the amplitude from known galaxy populations, are inconsistent with EOR galaxies and black holes, and are largely explained by IHL emission. The measured fluctuations are associated with an EBL intensity that is comparable to the background from known galaxies measured through number counts, and therefore a substantial contribution to the energy contained in photons in the cosmos.
We report our analysis of MACS J0717.5+3745 using 140 and 268 GHz Bolocam data collected at the Caltech Submillimeter Observatory. We detect extended Sunyaev-Zeldovich (SZ) effect signal at high significance in both Bolocam bands, and we employ Hersc hel-SPIRE observations to subtract the signal from dusty background galaxies in the 268 GHz data. We constrain the two-band SZ surface brightness toward two of the sub-clusters of MACS J0717.5+3745: the main sub-cluster (named C), and a sub-cluster identified in spectroscopic optical data to have a line-of-sight velocity of +3200 km/s (named B). We determine the surface brightness in two separate ways: via fits of parametric models and via direct integration of the images. For both sub-clusters, we find consistent surface brightnesses from both analysis methods. We constrain spectral templates consisting of relativistically corrected thermal and kinetic SZ signals, using a jointly-derived electron temperature from Chandra and XMM-Newton under the assumption that each sub-cluster is isothermal. The data show no evidence for a kinetic SZ signal toward sub-cluster C, but they do indicate a significant kinetic SZ signal toward sub-cluster B. The model-derived surface brightnesses for sub-cluster B yield a best-fit line-of-sight velocity of v_z = +3450 +- 900 km/s, with (1 - Prob[v_z > 0]) = 1.3 x 10^-5 (4.2 sigma away from 0 for a Gaussian distribution). The directly integrated sub-cluster B SZ surface brightnesses provide a best-fit v_z = +2550 +- 1050 km/s, with (1 - Prob[v_z > 0]) = 2.2 x 10^-3 (2.9 sigma).
Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z~6; the wavelength of these photons has been redshifted by (1+z) into the near infrared today and can be mea sured using instruments situated above the Earths atmosphere. First flying in February 2009, the Cosmic Infrared Background Experiment (CIBER) comprises four instruments housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband imaging instruments, make a detailed characterization of the spectral shape of the IR background using a low resolution spectrometer, and measure the absolute brightness of the Zodical light foreground with a high resolution spectrometer in each of our six science fields. This paper presents the scientific motivation for CIBER and details of its first two flights, including a review of the published scientific results from the first flight and an outlook for future reionization science with CIBER data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا