ترغب بنشر مسار تعليمي؟ اضغط هنا

We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array and spanning 1-45 GHz and 17-770 days following discovery. This nova---the first ever detected in gamma rays---shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grew as the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass loss rate for the Mira wind of Mdot_w ~ 10^-6 M_sun/yr. We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of >~20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.
The bright X-ray transient H 1743-322 was observed daily by the Rossi X-ray Timing Explorer (RXTE) during most of its 8-month outburst in 2003. We present a detailed spectral analysis and a supporting timing analysis of all of these data, and we disc uss the behavior and evolution of the source in terms of the three principal X-ray states defined by Remillard and McClintock. These X-ray results are complemented by Very Large Array (VLA) data obtained at six frequencies that provide quite complete coverage of the entire outburst cycle at 4.860 GHz and 8.460 GHz. We also present photometric data and finding charts for the optical counterpart in both outburst and quiescence. We closely compare H 1743-322 to the well-studied black-hole X-ray transient XTE J1550-564 and find the behaviors of these systems to be very similar. As reported elsewhere, both H 1743-322 and XTE J1550-564 are relativistic jet sources and both exhibit a pair of high-frequency QPO oscillations with a 3:2 frequency ratio. The many striking similarities between these two sources argue strongly that H 1743-322 is a black hole binary, although presently no dynamical data exist to support this conclusion.
We present simultaneous dual-frequency radio observations of Cygnus X-3 during a phase of low-level activity. We constrain the minimum variability timescale to be 20 minutes at 43 GHz and 30 minutes at 15 GHz, implying source sizes of 2 to 4 AU. We d etect polarized emission at a level of a few per cent at 43 GHz which varies with the total intensity. The delay of approximately 10 minutes between the peaks of the flares at the two frequencies is seen to decrease with time, and we find that synchrotron self-absorption and free-free absorption by entrained thermal material play a larger role in determining the opacity than absorption in the stellar wind of the companion. A shock-in-jet model gives a good fit to the lightcurves at all frequencies, demonstrating that this mechanism, which has previously been used to explain the brighter, longer-lived giant outbursts in this source, is also applicable to these low-level flaring events. Assembling the data from outbursts spanning over two orders of magnitude in flux density shows evidence for a strong correlation between the peak brightness of an event, and the timescale and frequency at which this is attained. Brighter flares evolve on longer timescales and peak at lower frequencies. Analysis of the fitted model parameters suggests that brighter outbursts are due to shocks forming further downstream in the jet, with an increased electron normalisation and magnetic field strength both playing a role in setting the strength of the outburst.
We report high-resolution radio imaging of the recurrent nova RS Ophiuchi (RS Oph) during the first month of the 2006 outburst, using the Very Long Baseline Array (VLBA). Observations made on days 20.8 and 26.8 of the outburst show a synchrotron-emit ting partial shell that is much brighter to the east than to the west. Assuming the broad component of the infrared lines corresponds to the outermost part of the shell seen by the VLBA, the distance to the source is $2.45pm0.4 kpc$. The circular shape and spectral indices of the shell emission challenge simple models for the radio structure immediately after the outburst. The second epoch also shows an additional, resolved, synchrotron-emitting component well to the east of the shell. Its inferred velocity is comparable to the escape speed from the surface of a high-mass white dwarf. This component was not seen in the first epoch. Its appearance may be related to the outflow reaching the edge of the nebula created by the red giant wind, which had been re-filling the void left by the last outburst in 1985. This eastern component is likely related to the jets previously seen in this and other symbiotic stars, and represents the earliest clear detection of such a jet, as well as the best case yet for synchrotron emission from a white dwarf jet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا