ترغب بنشر مسار تعليمي؟ اضغط هنا

Memorizing Pierre van Baal we will shortly review his life and his scientific achievements. Starting then with some basics in gauge field topology we mainly will discuss recent efforts in determining the topological susceptibility in lattice QCD.
We study the gluon and ghost propagators of SU(2) lattice Landau gauge theory and find their low-momentum behavior being sensitive to the lowest non-trivial eigenvalue (lambda_1) of the Faddeev-Popov operator. If the gauge-fixing favors Gribov copies with small (large) values for lambda_1 both the ghost dressing function and the gluon propagator get enhanced (suppressed) at low momentum. For larger momenta no dependence on Gribov copies is seen. We compare our lattice data to the corresponding (decoupling) solutions from the DSE/FRGE study of Fischer, Maas and Pawlowski [Annals Phys. 324 (2009) 2408] and find qualitatively good agreement.
We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consiste ntly compare lattice data for the bare propagators with that of higher-loop numerical stochastic perturbation theory (NSPT). In this paper we provide such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to be multiplicatively related. The data of the associated ghost-gluon coupling matches up almost completely. For the explored lattice spacings and sizes discretization artifacts, finite-size and Gribov-copy effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon coupling are seen to be approached by those of higher-order NSPT.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا