ترغب بنشر مسار تعليمي؟ اضغط هنا

Any solution to the Yang-Baxter equation yields a family of representations of braid groups. Under certain conditions, identified by Turaev, the appropriately normalized trace of these representations yields a link invariant. Any Yang-Baxter solution can be interpreted as a two-qudit quantum gate. Here we show that if this gate is non-entangling, then the resulting invariant of knots is trivial. We thus obtain a general connection between topological entanglement and quantum entanglement, as suggested by Kauffman et al.
Several previous works have investigated the circumstances under which quantum adiabatic optimization algorithms can tunnel out of local energy minima that trap simulated annealing or other classical local search algorithms. Here we investigate the e ven more basic question of whether adiabatic optimization algorithms always succeed in polynomial time for trivial optimization problems in which there are no local energy minima other than the global minimum. Surprisingly, we find a counterexample in which the potential is a single basin on a graph, but the eigenvalue gap is exponentially small as a function of the number of vertices. In this counterexample, the ground state wavefunction consists of two lobes separated by a region of exponentially small amplitude. Conversely, we prove if the ground state wavefunction is single-peaked then the eigenvalue gap scales at worst as one over the square of the number of vertices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا