ترغب بنشر مسار تعليمي؟ اضغط هنا

Yang-Baxter operators need quantum entanglement to distinguish knots

130   0   0.0 ( 0 )
 نشر من قبل Stephen Jordan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Any solution to the Yang-Baxter equation yields a family of representations of braid groups. Under certain conditions, identified by Turaev, the appropriately normalized trace of these representations yields a link invariant. Any Yang-Baxter solution can be interpreted as a two-qudit quantum gate. Here we show that if this gate is non-entangling, then the resulting invariant of knots is trivial. We thus obtain a general connection between topological entanglement and quantum entanglement, as suggested by Kauffman et al.



قيم البحث

اقرأ أيضاً

91 - Li-Wei Yu , Mo-Lin Ge 2019
Usually the $ell_2$-norm plays vital roles in quantum physics, acting as the probability of states. In this paper, we show the important roles of $ell_1$-norm in Yang-Baxter quantum system, in connection with both the braid matrix and quantum entangl ements. Concretely, we choose the 2-body and 3-body S-matrices, constrained by Yang-Baxter equation. It has been shown that for 2-body case, the extreme values of $ell_1$-norm lead to two types of braid matrices and 2-qubit Bell states. Here we show that for the 3-body case, due to the constraint of YBE, the extreme values of $ell_1$-norm lead to both 3-qubit $|GHZrangle$ (local maximum) and $|Wrangle$ (local minimum) states, which cover all 3-qubit genuine entanglements for pure states under SLOCC. This is a more convincing proof for the roles of $ell_1$-norm in quantum mechanics.
106 - Ming-Guang Hu , Kang Xue , 2008
Entanglement is believed to be crucial in macroscopic physical systems for understanding the collective quantum phenomena such as quantum phase transitions. We start from and solve exactly a novel Yang-Baxter spin-1/2 chain model with inhomogeneous a nd anisotropic short-range interactions. For the ground state, we show the behavior of neighboring entanglement in the parameter space and find that the inhomogeneous coupling strengths affect entanglement in a distinctive way from the homogeneous case, but this would not affect the coincidence between entanglement and quantum criticality.
117 - Li-Wei Yu , Mo-Lin Ge 2018
Starting from the Kauffman-Lomonaco braiding matrix transforming the natural basis to Bell states, the spectral parameter describing the entanglement is introduced through Yang-Baxterization. It gives rise to a new type of solutions for Yang-Baxter e quation, called the type-II that differs from the familiar solution called type-I of YBE associated with the usual chain models. The Majorana fermionic version of type-II yields the Kitaev Hamiltonian. The introduced $ell_1$ -norm leads to the maximum of the entanglement by taking the extreme value and shows that it is related to the Wigners D-function. Based on the Yang-Baxter equation the 3-body S-Matrix for type-II is explicitly given. Different from the type-I solution, the type-II solution of YBE should be considered in describing quantum information. The idea is further extended to $mathbb{Z}_3$ parafermion model based on $SU(3)$ principal representation. The type-II is in difference from the familiar type-I in many respects. For example, the quantities corresponding to velocity in the chain models obey the Lorentzian additivity $frac{u+v}{1+uv}$ rather than Galilean rule $(u+v)$. Most possibly, for the type-II solutions of YBE there may not exist RTT relation. Further more, for $mathbb{Z}_3$ parafermion model we only need the rational Yang-Baxterization, which seems like trigonometric. Similar discussions are also made in terms of generalized Yang-Baxter equation with three spin spaces ${1,frac{1}{2},frac{1}{2}}$.
468 - Jing-Ling Chen , Kang Xue , 2008
Spin interaction Hamiltonians are obtained from the unitary Yang--Baxter $breve{R}$-matrix. Based on which, we study Berry phase and quantum criticality in the Yang--Baxter systems.
121 - Li-Wei Yu , Mo-Lin Ge 2014
A new realization of doubling degeneracy based on emergent Majorana operator $Gamma$ presented by Lee-Wilczek has been made. The Hamiltonian can be obtained through the new type of solution of Yang-Baxter equation, i.e. $breve{R}(theta)$-matrix. For 2-body interaction, $breve{R}(theta)$ gives the superconducting chain that is the same as 1D Kitaev chain model. The 3-body Hamiltonian commuting with $Gamma$ is derived by 3-body $breve{R}_{123}$-matrix, we thus show that the essence of the doubling degeneracy is due to $[breve{R}(theta), Gamma]=0$. We also show that the extended $Gamma$-operator is an invariant of braid group $B_N$ for odd $N$. Moreover, with the extended $Gamma$-operator, we construct the high dimensional matrix representation of solution to Yang-Baxter equation and find its application in constructing $2N$-qubit Greenberger-Horne-Zeilinger state for odd $N$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا