ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy-galaxy weak lensing is a direct probe of the mean matter distribution around galaxies. The depth and sky coverage of the CFHT Legacy Survey yield statistically significant galaxy halo mass measurements over a much wider range of stellar masses ($10^{8.75}$ to $10^{11.3} M_{odot}$) and redshifts ($0.2 < z < 0.8$) than previous weak lensing studies. At redshift $z sim 0.5$, the stellar-to-halo mass ratio (SHMR) reaches a maximum of $4.0pm0.2$ percent as a function of halo mass at $sim 10^{12.25} M_{odot}$. We find, for the first time from weak lensing alone, evidence for significant evolution in the SHMR: the peak ratio falls as a function of cosmic time from $4.5 pm 0.3$ percent at $z sim 0.7$ to $3.4 pm 0.2$ percent at $z sim 0.3$, and shifts to lower stellar mass haloes. These evolutionary trends are dominated by red galaxies, and are consistent with a model in which the stellar mass above which star formation is quenched downsizes with cosmic time. In contrast, the SHMR of blue, star-forming galaxies is well-fit by a power law that does not evolve with time. This suggests that blue galaxies form stars at a rate that is balanced with their dark matter accretion in such a way that they evolve along the SHMR locus. The redshift dependence of the SHMR can be used to constrain the evolution of the galaxy population over cosmic time.
We use weak gravitational lensing to analyse the dark matter halos around satellite galaxies in galaxy groups in the CFHTLenS dataset. This dataset is derived from the CFHTLS-Wide survey, and encompasses 154 sq. deg of high-quality shape data. Using the photometric redshifts, we divide the sample of lens galaxies with stellar masses in the range 10^9 Msun to 10^10.5 Msun into those likely to lie in high-density environments (HDE) and those likely to lie in low-density environments (LDE). Through comparison with galaxy catalogues extracted from the Millennium Simulation, we show that the sample of HDE galaxies should primarily (~61%) consist of satellite galaxies in groups, while the sample of LDE galaxies should consist of mostly (~87%) non-satellite (field and central) galaxies. Comparing the lensing signals around samples of HDE and LDE galaxies matched in stellar mass, the lensing signal around HDE galaxies clearly shows a positive contribution from their host groups on their lensing signals at radii of ~500--1000 kpc, the typical separation between satellites and group centres. More importantly, the subhalos of HDE galaxies are less massive than those around LDE galaxies by a factor 0.65 +/- 0.12, significant at the 2.9 sigma level. A natural explanation is that the halos of satellite galaxies are stripped through tidal effects in the group environment. Our results are consistent with a typical tidal truncation radius of ~40 kpc.
We demonstrate the possibility of detecting tidal stripping of dark matter subhalos within galaxy groups using weak gravitational lensing. We have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation to generate mock shape catalogues. The ray-tracing catalogues assume a halo model for galaxies and groups, using various models with different distributions of mass between galaxy and group halos to simulate different stages of group evolution. Using these mock catalogues, we forecast the lensing signals that will be detected around galaxy groups and satellite galaxies, as well as test two different methods for isolating the satellites lensing signals. A key challenge is to determine the accuracy to which group centres can be identified. We show that with current and ongoing surveys, it will possible to detect stripping in groups of mass 10^12--10^15 Msun.
Peculiar velocities are an important probe of the growth rate of mass density fluctuations in the Universe. Most previous studies have focussed exclusively on measuring peculiar velocities at intermediate ($0.2 < z < 1$) redshifts using statistical r edshift-space distortions. Here we emphasize the power of peculiar velocities obtained directly from distance measurements at low redshift ($z lesssim 0.05$), and show that these data break the usual degeneracies in the Omega_{m,0} -- $sigma_{8,0}$ parameter space. Using only peculiar velocity data, we find $Omega_{m,0} = 0.259pm0.045$ and $sigma_{8,0} = 0.748pm0.035$. Fixing the amplitude of fluctuations at very high redshift using observations of the Cosmic Microwave Background (CMB), the same data can be used to constrain the growth index $gamma$, with the strongest constraints coming from peculiar velocity measurements in the nearby Universe. We find $gamma = 0.619pm 0.054$, consistent with LCDM. Current peculiar velocity data already strongly constrain modified gravity models, and will be a powerful test as data accumulate.
Peculiar velocities arise from gravitational instability, and thus are linked to the surrounding distribution of matter. In order to understand the motion of the Local Group with respect to the Cosmic Microwave Background, a deep all-sky map of the g alaxy distribution is required. Here we present a new redshift compilation of 69~160 galaxies, dubbed 2M++, to map large-scale structures of the Local Universe over nearly the whole sky, and reaching depths of K <= 12.5, or 200 Mpc/h. The target catalogue is based on the Two-Micron-All-Sky Extended Source Catalog (2MASS-XSC). The primary sources of redshifts are the 2MASS Redshift Survey, the 6dF galaxy redshift survey and the Sloan Digital Sky Survey (DR7). We assess redshift completeness in each region and compute the weights required to correct for redshift incompleteness and apparent magnitude limits, and discuss corrections for incompleteness in the Zone of Avoidance. We present the density field for this survey, and discuss the importance of large-scale structures such as the Shapley Concentration.
We present a galaxy group-finding algorithm, the Photo-z Probability Peaks (P3) algorithm, optimized for locating small galaxy groups using photometric redshift data by searching for peaks in the signal-to-noise of the local overdensity of galaxies i n a three-dimensional grid. This method is an improvement over similar two-dimensional matched-filter methods in reducing background contamination through the use of redshift information, allowing it to accurately detect groups at lower richness. We present the results of tests of our algorithm on galaxy catalogues from the Millennium Simulation. Using a minimum S/N of 3 for detected groups, a group aperture size of 0.25 Mpc/h, and assuming photometric redshift accuracy of sigma_z = 0.05 it attains a purity of 84% and detects ~295 groups/deg.^2 with an average group richness of 8.6 members. Assuming photometric redshift accuracy of sigma_z = 0.02, it attains a purity of 97% and detects ~143 groups/deg.^2 with an average group richness of 12.5 members. We also test our algorithm on data available for the COSMOS field and the presently-available fields from the CFHTLS-Wide survey, presenting preliminary results of this analysis.
The origins of the bulge and disc components of galaxies are of primary importance to understanding galaxy formation. Here bulge-disc decomposition is performed simultaneously in B- and R-bands for 922 bright galaxies in 8 nearby (z < 0.06) clusters with deep redshift coverage using photometry from the NOAO Fundamental Plane Survey. The total galaxy colours follow a universal colour-magnitude relation (CMR). The discs of L_* galaxies are 0.24 magnitudes bluer in $B-R$ than bulges. Bulges have a significant CMR slope while the CMR slope of discs is flat. Thus the slope of the CMR of the total light is driven primarily (60%) by the bulge-CMR, and to a lesser extent (40%) by the change in the bulge-to-total ratio as a function of magnitude. The colours of the bulge and disc components do not depend on the bulge-to-total ratio, for galaxies with bulge-to-total ratios greater than 0.2. While the colours of the bulge components do not depend significantly on environment, the median colours of discs vary significantly, with discs in the cluster centre redder by 0.10 magnitudes than those at the virial radius. Thus while star formation in bulges appears to be regulated primarily by mass-dependent, and hence presumably internal, processes, that of discs is affected by the cluster environment.
This paper addresses the challenge of understanding the typical star formation histories of red sequence galaxies, using linestrength indices and mass-to-light ratios as complementary constraints on their stellar age distribution. We construct simple parametric models of the star formation history that bracket a range of scenarios, and fit these models to the linestrength indices of low-redshift cluster red-sequence galaxies. For giant galaxies, we confirm the downsizing trend. We find, however, that this trend flattens or reverses at sigma < 70 km/s. We then compare predicted stellar mass-to-light ratios with dynamical mass-to-light ratios derived from the Fundamental Plane (FP), or by the SAURON group. For galaxies with sigma ~ 70 km/s, models with a frosting of young stars and models with exponential star formation histories have stellar mass-to-light ratios that are larger than observed dynamical mass-to-light ratios by factors of 1.7 and 1.4, respectively, and so are rejected. The SSP model is consistent with the FP, and requires a modest amount of dark matter (20-30%) to account for the difference between stellar and dynamical mass-to-light ratios. A model in which star formation was quenched at intermediate ages is also consistent with the observations. We find that the contribution of stellar populations to the tilt of the FP is highly dependent on the assumed star-formation history: for the SSP model, the tilt of the FP is driven primarily by stellar-population effects. For a quenched model, two-thirds of the tilt is due to stellar populations and only one third is due to dark matter or non-homology.
We analyse the abundance ratios of the light elements Mg, Ca, C and N, relative to Fe, for 147 red-sequence galaxies in the Coma cluster and the Shapley Supercluster. The sample covers a six-magnitude range in luminosity, from giant ellipticals to dw arfs at M^*+4. We exploit the wide mass range to investigate systematic trends in the abundance ratios Mg/Fe, Ca/Fe, C/Fe and N/Fe. We find that each of these ratios can be well modelled using two-parameter relations of the form [X/Fe] = a0 + a1 log sigma + a2 [Fe/H], where sigma is the velocity dispersion. Analysing these X-planes reveals new structure in the abundance patterns, beyond the traditional one-parameter (e.g. Mg/Fe-sigma) correlations. The X-planes for the alpha elements, Mg and Ca, indicate a positive correlation with velocity dispersion, and simultaneously an anti-correlation with Fe/H (i.e. a1>0 and a2<0). Taking both effects into account dramatically reduces the scatter, compared to the traditional X/Fe-sigma relations. For C and N, a similar correlation with velocity dispersion is recovered, but there is no additional dependence on Fe/H (i.e. a1>0 and a2~0). The explicit dependence of X/Fe on two parameters is evidence that at least two physical processes are at work in setting the abundance patterns. The Fe/H dependence of Mg/Fe and Ca/Fe, at fixed sigma, may result from different durations of star formation, from galaxy to galaxy. The absence of corresponding Fe/H dependence for C and N is consistent with these elements being generated in lower-mass stars. The increase with sigma, at fixed Fe/H, is similar for elements Mg, C and N, and slightly shallower for Ca. This pattern of trends cannot be explained solely by a systematic variation of star-formation time-scale with sigma.
We investigate the stellar populations in a sample of 89 faint (M*+2 to M*+4) red galaxies in the Coma cluster, using high S/N spectroscopy from the MMT. Our sample is drawn from two 1-degree fields, one centred on the cluster core and the other loca ted a degree to the south west of the cluster centre. For a comparison sample we use published high-S/N data for red-sequence galaxies in the Shapley Supercluster. We use state-of-the-art stellar population models to infer the SSP-equivalent age and metallicity (Fe/H) for each galaxy, as well as the abundances of the light elements Mg, Ca, C and N. The ages of the Coma dwarfs span a wide range from <2 Gyr to >10 Gyr, with a strong environmental dependence. The oldest galaxies are found only in the core, while most of the galaxies in the outer south-west field have ages ~3 Gyr. The galaxies have a metallicity range -1.0 < [Fe/H] < 0.0, and follow the same age-metallicity-mass plane as high-mass galaxies, but with increased intrinsic scatter. The Mg/Fe abundance ratios are on average slightly super-solar, and span a range -0.1 < [Mg/Fe] < +0.4. The highest Mg enhancements are found only in the cluster core, while solar ratios predominate in the outskirts. Depending on the assumed star-formation history (quenched versus burst-dominated), the number of dwarf galaxies on the red sequence in the Coma core has doubled since z~0.4-0.7. These estimates bracket the red-sequence growth timescales found by direct studies of distant clusters. In the south-west field, the red sequence was established only at z~0.1-0.2. Our observations confirm previous indications of very recently quenched star formation in this part of the cluster. Our results support the picture in which much of the cluster passive dwarf population was generated by environment-driven transformation of infalling late-type galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا