ترغب بنشر مسار تعليمي؟ اضغط هنا

69 - Michael Efroimsky 2015
The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers divided by quality factors. Common is the (often illegitimate) approximation of the dynamical Love numbers with their static counterparts. As the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: $,k_l/Qpropto 1/(mu Q),$. In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that determines the tidal evolution is a product of the effective viscosity $,eta,$ by the tidal frequency $,chi,$. The functional form of the torques dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of $,etachi,$ we get $,k_l/Qpropto 1/(etachi);$; $,$while for lower values we obtain $,k_l/Qpropto etachi,$. Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies.
A formula for the tidal dissipation rate in a spherical body is derived from first principles, to correct some mathematical inaccuracies found in the literature. The development is combined with the Darwin-Kaula formalism for tides. Our intermediate results are compared with those by Zschau (1978) and Platzman (1984). When restricted to the special case of an incompressible spherical planet spinning synchronously without libration, our final formula can be compared with the commonly used expression from Peale & Cassen (1978, Eqn. 31). The two turn out to differ. In our expression, the contributions from all Fourier modes are positive-definite, this not being the case of the formula from Ibid. (The presence of negative terms in their formula was noticed by Makarov 2013.) Examples of application of our expression for the tidal damping rate are provided in the work by Makarov and Efroimsky (2014).
In Efroimsky & Makarov (2014), we derived from the first principles a formula for the tidal heating rate in a tidally perturbed homogeneous sphere. We compared it with the formulae used in the literature, and pointed out the differences. Using this r esult, we now present three case studies - Mercury, Kepler-10b, and a triaxial Io. A very sharp frequency-dependence of k2/Q near spin-orbit resonances yields a similarly sharp dependence of k2/Q on the spin rate. This indicates that physical libration may play a major role in tidal heating of synchronously rotating bodies. The magnitude of libration in the spin rate being defined by the planets triaxiality, the latter should be a factor determining the dissipation rate. Other parameters equal, a synchronously rotating body with a stronger triaxiality should generate more heat than a similar body of a more symmetrical shape. Further in the paper, we discuss scenarios where initially triaxial objects melt and lose their triaxiality. Thereafter, dissipation in them becomes less intensive; so the bodies freeze. The tidal bulge becomes a new permanent figure, with a new triaxiality lower than the original. In the paper, we also derive simplified, approximate expressions for dissipation rate in a rocky planet of the Maxwell rheology, with a not too small Maxwell time. The three expressions derived pertain to the cases of a synchronous spin, a 3:2 resonance, and a nonresonant rotation; so they can be applied to most close-in super-Earth exoplanets detected thus far. In such bodies, the rate of tidal heating outside of synchronous rotation is weakly dependent on the eccentricity and obliquity, provided both these parameters are small or moderate. According to our calculation, Kepler-10b could hardly survive the great amount of tidal heating without being synchronised, circularised and also reshaped through a complete or partial melt-down.
Spin-orbit coupling is often described in the MacDonald torque approach which has become the textbook standard. Within this method, a concise expression for the additional tidal potential, derived by MacDonald (1964; Rev. Geophys. 2, 467), is combine d with an assumption that the Q factor is frequency-independent (i.e., that the geometric lag angle is constant in time). This makes the approach unphysical because MacDonalds derivation of the said formula was implicitly based on keeping the time lag frequency-independent, which is equivalent to setting Q to scale as the inverse tidal frequency. The contradiction requires the MacDonald treatment of both non-resonant and resonant rotation to be rewritten. The non-resonant case was reconsidered by Efroimsky & Williams (2009; CMDA 104, 257), in application to spin modes distant from the major commensurabilities. We continue this work by introducing the necessary alterations into the MacDonald-torque-based model of falling into a 1:1 resonance. (For the original version of the model, see Goldreich 1966; AJ 71, 1.) We also study the effect of the triaxiality on both circulating and librating rotation near the synchronous state. Circulating rotation may evolve toward the libration region or toward a spin rate larger than synchronous (pseudosynchronous spin). Which behaviour depends on the eccentricity, the triaxiality of the primary, and the mass ratio of the secondary and primary bodies. The spin evolution will always stall for the oblate case. For small-amplitude librations, expressions are derived for the libration frequency, damping rate, and average orientation. However, the stability of pseudosynchronous spin hinges upon the dissipation model. Makarov and Efroimsky (2012; arXiv:1209.1616) have found that a more realistic dissipation model than the corrected MacDonald torque makes pseudosynchronous spin unstable.
We reexamine the popular belief that a telluric planet or satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.
Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies tidal despinning, and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directl y relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars.We explain why the derivation of this expression, offered in the paper by Goldreich (1966; AJ 71, 1 - 7) and in the books by Kaula (1968, eqn. 4.5.29), and Murray & Dermott (1999, eqn. 4.159), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e, the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag (or the phase lag) being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.
We point out that the MacDonald formula for body-tide torques is valid only in the zeroth order of e/Q, while its time-average is valid in the first order. So the formula cannot be used for analysis in higher orders of e/Q. This necessitates correcti ons in the theory of tidal despinning and libration damping. We prove that when the inclination is low and phase lags are linear in frequency, the Kaula series is equivalent to a corrected version of the MacDonald method. The correction to MacDonalds approach would be to set the phase lag of the integral bulge proportional to the instantaneous frequency. The equivalence of descriptions gets violated by a nonlinear frequency-dependence of the lag. We explain that both the MacDonald- and Darwin-torque-based derivations of the popular formula for the tidal despinning rate are limited to low inclinations and to the phase lags being linear in frequency. The Darwin-torque-based derivation, though, is general enough to accommodate both a finite inclination and the actual rheology. Although rheologies with Q scaling as the frequency to a positive power make the torque diverge at a zero frequency, this reveals not the impossible nature of the rheology, but a flaw in mathematics, i.e., a common misassumption that damping merely provides lags to the terms of the Fourier series for the tidal potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the magnitudes of the terms, too, get changed. Reinstating of this detail tames the infinities and rehabilitates the impossible scaling law (which happens to be the actual law the terrestrial planets obey at low frequencies).
419 - Michael Efroimsky 2012
In geophysics and seismology, it is a common knowledge that the quality factors Q of the mantle and crust materials scale as the tidal frequency to a positive fractional power (Karato 2007, Efroimsky and Lainey 2007). In astronomy, there exists an eq ually common belief that such rheological models introduce discontinuities into the equations and thus are unrealistic at low frequencies. We demonstrate that, while such models indeed make the conventional expressions for the tidal torque diverge for vanishing frequencies, the emerging infinities reveal not the impossible nature of one or another rheology, but a subtle flaw in the underlying mathematical model of friction. Flawed is the common misassumption that the tidal force and torque are inversely proportional to the quality factor. In reality, they are proportional to the sine of the tidal phase lag, while the inverse quality factor is commonly identified with the tangent of the lag. The sine and tangent of the lag are close everywhere {it{except in the vicinity of the zero frequency}}. Reinstating of this detail tames the fake infinities and rehabilitates the impossible scaling law (which happens to be the actual law the mantles obey). This preprint is a pilot paper. A more comprehensive treatise on tidal torques is to be published (Efroimsky and Williams 2009).
Any model of tides is based on a specific hypothesis of how lagging depends on the tidal-flexure frequency. For example, Gerstenkorn (1955), MacDonald (1964), and Kaula (1964) assumed constancy of the geometric lag angle, while Singer (1968) and Mign ard (1979, 1980) asserted constancy of the time lag. Thus, each of these two models was based on a certain law of scaling of the geometric lag. The actual dependence of the geometric lag on the frequency is more complicated and is determined by the rheology of the planet. Besides, each particular functional form of this dependence will unambiguously fix the appropriate form of the frequency dependence of the tidal quality factor, Q. Since at present we know the shape of the dependence of Q upon the frequency, we can reverse our line of reasoning and single out the appropriate actual frequency-dependence of the angular lag. This dependence turns out to be different from those employed hitherto, and it entails considerable alterations in the time scales of the tide-generated dynamical evolution. Phobos fall on Mars is an example we consider.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا