ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide a UTXO model of blockchain transactions that is able to represent both credit and debt on the same blockchain. Ordinarily, the UTXO model is solely used to represent credit and the representation of credit and debit together is achieved us ing the account model because of its support for balances. However, the UTXO model provides superior privacy, safety, and scalability when compared to the account model. In this work, we introduce a UTXO model that has the flexibility of balances with the usual benefits of the UTXO model. This model extends the conventional UTXO model, which represents credits as unmatched outputs, by representing debts as unmatched inputs. We apply our model to solving the problem of transparency in reverse mortgage markets, in which some transparency is necessary for a healthy market but complete transparency leads to adverse outcomes. Here the pseudonymous properties of the UTXO model protect the privacy of loan recipients while still allowing an aggregate view of the loan market. We present a prototype of our implementation in Tendermint and discuss the design and its benefits.
The Backward Simulation (BS) approach was developed to generate, simply and efficiently, sample paths of correlated multivariate Poisson process with negative correlation coefficients between their components. In this paper, we extend the BS approach to model multivariate Mixed Poisson processes which have many important applications in Insurance, Finance, Geophysics and many other areas of Applied Probability. We also extend the Forward Continuation approach, introduced in our earlier work, to multivariate Mixed Poisson processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا