ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of amino acids in meteorites has presented two clues to the origin of their processing subsequent to their formation: a slight preference for left-handedness in some of them, and isotopic anomalies in some of their constituent atoms. In this article we present theoretical results from the Supernova Neutrino Amino Acid Processing (SNAAP) model, which uses electron anti-neutrinos and the magnetic fields from source objects such as supernovae or colliding neutron stars to selectively destroy one amino acid chirality and to create isotopic abundance shifts. For plausible magnetic fields and electron anti-neutrino fluxes, non-zero, positive enantiomeric excesses, $ee$s, defined to be the relative left/right asymmetry in an amino acid population, are reviewed for two amino acids, and conditions are suggested that would produce $ee>0$ for all of the $alpha$-amino acids. The relatively high energy anti-neutrinos that produce the $ee$s would inevitably also produce isotopic anomalies. A nuclear reaction network was developed to describe the reactions resulting from them and the nuclides in the meteorites. At similar anti-neutrino fluxes, assumed recombination of the detritus from the anti-neutrino interactions is shown to produce appreciable isotopic anomalies in qualitative agreement with those observed for D/$^1$H and $^{15}$N/$^{14}$N. The isotopic anomalies for $^{13}$C/$^{12}$C are predicted to be small, as are also observed. Autocatalysis may be necessary for any model to produce the largest $ee$s observed in meteorites. This allows the constraints of the original SNAAP model to be relaxed, increasing the probability of meteoroid survival in sites where amino acid processing is possible. These results have obvious implications for the origin of life on Earth.
218 - Michael A. Famiano 2019
Nuclear masses are the most fundamental of all nuclear properties, yet they can provide a wealth of knowledge, including information on astrophysical sites, constraints on existing theory, and fundamental symmetries. In nearly all applications, it is necessary to measure nuclear masses with very high precision. As mass measurements push to more short-lived and more massive nuclei, the practical constraints on mass measurement techniques become more exacting. Various techniques used to measure nuclear masses, including their advantages and disadvantages are described. Descriptions of some of the world facilities at which the nuclear mass measurements are performed are given, and brief summaries of planned facilities are presented. Future directions are mentioned, and conclusions are presented which provide a possible outlook and emphasis on upcoming plans for nuclear mass measurements at existing facilities, those under construction, and those being planned.
Recent experimental results have confirmed a possible reduction in the GT$_+$ strengths of pf-shell nuclei. These proton-rich nuclei are of relevance in the deflagration and explosive burning phases of Type Ia supernovae. While prior GT strengths res ult in nucleosynthesis predictions with a lower-than-expected electron fraction, a reduction in the GT$_+$ strength can result in an slightly increased electron fraction compared to previous shell model predictions, though the enhancement is not as large as previous enhancements in going from rates computed by Fuller, Fowler, and Newman based on an independent particle model. A shell model parametrization has been developed which more closely matches experimental GT strengths. The resultant electron-capture rates are used in nucleosynthesis calculations for carbon deflagration and explosion phases of Type Ia supernovae, and the final mass fractions are compared to those obtained using more commonly-used rates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا