ﻻ يوجد ملخص باللغة العربية
Recent experimental results have confirmed a possible reduction in the GT$_+$ strengths of pf-shell nuclei. These proton-rich nuclei are of relevance in the deflagration and explosive burning phases of Type Ia supernovae. While prior GT strengths result in nucleosynthesis predictions with a lower-than-expected electron fraction, a reduction in the GT$_+$ strength can result in an slightly increased electron fraction compared to previous shell model predictions, though the enhancement is not as large as previous enhancements in going from rates computed by Fuller, Fowler, and Newman based on an independent particle model. A shell model parametrization has been developed which more closely matches experimental GT strengths. The resultant electron-capture rates are used in nucleosynthesis calculations for carbon deflagration and explosion phases of Type Ia supernovae, and the final mass fractions are compared to those obtained using more commonly-used rates.
Recent observations of Type Ia supernovae (SNe Ia) have shown diversified properties of the explosion strength, light curves and chemical composition. To investigate possible origins of such diversities in SNe Ia, we have presented multi-dimensional
Even though Type Ia supernovae (SNIa) play an important role in many fields in astronomy, the nature of the progenitors of SNIa remain a mystery. One of the classical evolutionary pathways towards a SNIa explosion is the single degenerate (SD) channe
We present adaptive mesh refinement (AMR) hydrodynamical simulations of the interaction between Type Ia supernovae and their companion stars within the context of the single-degenerate model. Results for 3D red-giant companions without binary evoluti
We optimize chiral interactions at next-to-next-to leading order to observables in two- and three-nucleon systems, and compute Gamow-Teller transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body currents. We compute spectra of th
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nu