ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse the globular cluster (GC) systems of a sample of 15 massive, compact early-type galaxies (ETGs), 13 of which have already been identified as good relic galaxy candidates on the basis of their compact morphologies, old stellar populations a nd stellar kinematics. These relic galaxy candidates are likely the nearby counterparts of high redshift red nugget galaxies. Using F814W (~I) and F160W (~H) data from the WFC3 camara onboard the Hubble Space Telescope we determine the total number, luminosity function, specific frequency, colour and spatial distribution of the GC systems. We find lower specific frequencies (SN<2.5 with a median of SN=1) than ETGs of comparable mass. This is consistent with a scenario of rapid, early dissipative formation, with relatively low levels of accretion of low-mass, high-SN satellites. The GC half-number radii are compact, but follow the relations found in normal ETGs. We identify an anticorrelation between the specific angular momentum (lambda_R) of the host galaxy and the (I-H) colour distribution width of their GC systems. Assuming that lambda_R provides a measure of the degree of dissipation in massive ETGs, we suggest that the (I-H) colour distribution width can be used as a proxy for the degree of complexity of the accretion histories in these systems.
It is generally recognized that massive galaxies form through a combination of in-situ collapse and ex-situ accretion. The in-situ component forms early, where gas collapse and compaction leads to the formation of massive compact systems (blue and re d nuggets) seen at $z>1$. The subsequent accretion of satellites brings in ex-situ material, growing these nuggets in size and mass to appear as the massive early-type galaxies (ETGs) we see locally. Due to stochasticity in the accretion process, in a few rare cases a red nugget will evolve to the present day having undergone little ex-situ mass accretion. The resulting massive, compact and ancient objects have been termed relic galaxies. Detailed stellar population and kinematic analyses are required to characterise these systems. However, an additional crucial aspect lies in determining the fraction of ex-situ mass they have accreted since their formation. Globular cluster systems can be used to constrain this fraction, since the oldest and most metal-poor globular clusters in massive galaxies are primarily an accreted, ex-situ population. Models for the formation of relic galaxies and their globular cluster systems suggest that, due to their early compaction and limited accretion of dark-matter dominated satellites, relic galaxies should have characteristically low dark-matter mass fractions compared to ETGs of the same stellar mass.
Globular clusters are compact, gravitationally bound systems of up to a million stars. The GCs in the Milky Way contain some of the oldest stars known, and provide important clues to the early formation and continuing evolution of our Galaxy. More ge nerally, GCs are associated with galaxies of all types and masses, from low-mass dwarf galaxies to the most massive early-type galaxies which lie in the centres of massive galaxy clusters. GC systems show several properties which connect tightly with properties of their host galaxies. For example, the total mass of GCs in a system scales linearly with the dark matter halo mass of its host galaxy. Numerical simulations are at the point of being able to resolve globular cluster formation within a cosmological framework. Therefore, GCs link a range of scales, from the physics of star formation in turbulent gas clouds, to the large-scale properties of galaxies and their dark matter. In this Chapter we review some of the basic observational approaches for GC systems, some of their key observational properties, and describe how GCs provide important clues to the formation of their parent galaxies.
We report the confirmation of an old, metal-poor globular cluster in the nearby dwarf irregular galaxy Sextans A, the first globular cluster known in this galaxy. The cluster, which we designate as Sextans A-GC1, lies some 4.4 arcminutes ($sim1.8$ kp c) to the SW of the galaxy centre and clearly resolves into stars in sub-arcsecond seeing ground-based imaging.We measure an integrated magnitude $V=18.04$, corresponding to an absolute magnitude, $M_{V,0} = -7.85$. This gives an inferred mass $Msim$1.6$times10^5~Modot$, assuming a Kroupa IMF. An integrated spectrum of Sextans A-GC1 reveals a heliocentric radial velocity $v_{rm helio}=305pm15$~ km/s, consistent with the systemic velocity of Sextans A. The location of candidate red giant branch stars in the cluster, and stellar population analyses of the clusters integrated optical spectrum, suggests a metallicity [Fe/H] $sim$--2.4, and an age $sim9$ Gyr. We measure a half light radius, $R_h = 7.6pm0.2$ pc. Normalising to the galaxy integrated magnitude, we obtain a $V$-band specific frequency, $S_N=2.1$. We compile a sample of 1,928 GCs in 28 galaxies with spectroscopic metallicities and find that the low metallicity of Sextans A-GC1 is close to a metallicity floor at [Fe/H] $sim-2.5$ seen in these globular cluster systems which include the Milky Way, M31, M87 and the Large Magellanic Cloud. This metallicity floor appears to hold across 6 dex in host galaxy stellar mass and is seen in galaxies with and without accreted GC subpopulations.
The claimed detection of a diffuse galaxy lacking dark matter represents a possible challenge to our understanding of the properties of these galaxies and galaxy formation in general. The galaxy, already identified in photographic plates taken in the summer of 1976 at the UK 48-in Schmidt telescope, presents normal distance-independent properties (e.g. colour, velocity dispersion of its globular clusters). However, distance-dependent quantities are at odds with those of other similar galaxies, namely the luminosity function and sizes of its globular clusters, mass-to-light ratio and dark matter content. Here we carry out a careful analysis of all extant data and show that they consistently indicate a much shorter distance (13 Mpc) than previously indicated (20 Mpc). With this revised distance, the galaxy appears to be a rather ordinary low surface brightness galaxy (R_e=1.4+-0.1 kpc; M*=6.0+-3.6x10^7 Msun) with plenty of room for dark matter (the fraction of dark matter inside the half mass radius is >75% and M_halo/M*>20) corresponding to a minimum halo mass >10^9 Msun. At 13 Mpc, the luminosity and structural properties of the globular clusters around the object are the same as those found in other galaxies.
Massive galaxies are thought to form in two phases: an initial, early collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark matter haloes. The globular cluster sys tems of such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (red) clusters, while more metal-poor (blue) clusters are brought in by the later accretion of less massive satellites. This formation process is thought to lead the creation of the multimodal optical colour distributions seen in the globular cluster systems of massive galaxies. Here we report HST/ACS observations of the massive relic galaxy NGC 1277 and its globular clusters, a nearby unevolved example of a high redshift red nugget. The g-z cluster colour distribution shows that the globular cluster system of the galaxy is unimodal and uniquely red. This is in strong contrast to normal galaxies of similar and larger stellar mass, whose cluster systems always exhibit (and are generally dominated by) blue clusters. We argue that the globular cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse and use analytic merger trees to show that the total stellar mass accretion is likely less than ~ 10 %. These results confirm that NGC 1277 is a genuine relic galaxy and show that the blue, metal-poor globular clusters constitute an accreted population in present day massive galaxies.
We present an analysis of archival {it HST/ACS} imaging in the F475W ($g_{475}$), F606W ($V_{606}$) and F814W ($I_{814}$) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5$sigma$ completeness limit of the imaging ($I_{814}=$27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of $27pm5$ and a $V$-band specific frequency, $S_N=28pm5$. Based on comparisons to the GC systems of Local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter dominated dwarf galaxy with virial mass $sim0.9times10^{10}$~msun and a dark-to-stellar mass ratio, $M_{vir} / M_{ star}sim 1000$. Based on the stellar mass-growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky Way-like system, but is more similar to quenched Large Magellanic Cloud-like systems. We find that the mean color of GC population, $g_{475}-I_{814}$ = $0.91pm0.05$ mag, coincides with the peak of the color distribution of intracluster GCs and are also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue-peak in the GC populations of massive galaxies may be fed - at least in part - by the disrupted equivalents of systems such as DF17.
Ultra diffuse galaxies (UDGs) have the sizes of giant galaxies but the luminosities of dwarfs. A key to understanding their origins comes from their total masses, but their low surface brightnesses ($mu(V) geq$ 25.0) generally prohibit dynamical stud ies. Here we report the first such measurements for a UDG (VCC~1287 in the Virgo cluster), based on its globular cluster system dynamics and size. From 7 GCs we measure a mean systemic velocity $v_{rm sys}$ = 1071$^{+14}_{-15}$ km/s, thereby confirming a Virgo-cluster association. We measure a velocity dispersion of 33$^{+16}_{-10}$ km/s within 8.1 kpc, corresponding to an enclosed mass of $(4.5 pm 2.8)times10^{9}$ $M_{odot}$ and a $g$-band mass-to-light ratio of $(M/L)_g = 106^{+126}_{-54}$. From the cumulative mass curve, along with the GC numbers, we estimate a virial mass of $sim8times10^{10}$ $M_{odot}$, yielding a dark-to-stellar mass fraction of $sim3000$. We show that this UDG is an outlier in $M_{rm star} - M_{rm halo}$ relations, suggesting extreme stochasticity in relatively massive star-forming halos in clusters. Finally, we discuss how counting GCs offers an efficient route to determining virial masses for UDGs.
We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar disks for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift=0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when halos have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.
We present precision radial velocities and stellar population parameters for 77 star clusters in the Local Group galaxy M33. Our GTC and WHT observations sample both young, massive clusters and known/candidate globular clusters, spanning ages ~ 10^6 - 10^10 yr, and metallicities, [M/H] ~-1.7 to solar. The cluster system exhibits an age-metallicity relation; the youngest clusters are the most metal-rich. When compared to HI data, clusters with [M/H] ~ -1.0 and younger than ~ 4 Gyr are clearly identified as a disc population. The clusters show evidence for strong time evolution in the disc radial metallicity gradient (d[M/H]dt / dR = 0.03 dex/kpc/Gyr). The oldest clusters have stronger, more negative gradients than the youngest clusters in M33. The clusters also show a clear age-velocity dispersion relation. The line of sight velocity dispersions of the clusters increases with age similar to Milky Way open clusters and stars. The general shape of the relation is reproduced by disc heating simulations, and the similarity between the relations in M33 and the Milky Way suggests that heating by substructure, and cooling of the ISM both play a role in shaping this relation. We identify 12 classical GCs, six of which are newly identified GC candidates. The GCs are more metal-rich than Milky Way halo clusters, and show weak rotation. The inner (R < 4.5 kpc) GCs exhibit a steep radial metallicity gradient (d[M/H]/dR = -0.29+-0.11 dex/kpc) and an exponential-like surface density profile. We argue that these inner GCs are thick disc rather than halo objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا