ترغب بنشر مسار تعليمي؟ اضغط هنا

While the fine-grained visual categorization (FGVC) problems have been greatly developed in the past years, the Ultra-fine-grained visual categorization (Ultra-FGVC) problems have been understudied. FGVC aims at classifying objects from the same spec ies (very similar categories), while the Ultra-FGVC targets at more challenging problems of classifying images at an ultra-fine granularity where even human experts may fail to identify the visual difference. The challenges for Ultra-FGVC mainly comes from two aspects: one is that the Ultra-FGVC often arises overfitting problems due to the lack of training samples; and another lies in that the inter-class variance among images is much smaller than normal FGVC tasks, which makes it difficult to learn discriminative features for each class. To solve these challenges, a mask-guided feature extraction and feature augmentation method is proposed in this paper to extract discriminative and informative regions of images which are then used to augment the original feature map. The advantage of the proposed method is that the feature detection and extraction model only requires a small amount of target region samples with bounding boxes for training, then it can automatically locate the target area for a large number of images in the dataset at a high detection accuracy. Experimental results on two public datasets and ten state-of-the-art benchmark methods consistently demonstrate the effectiveness of the proposed method both visually and quantitatively.
Two-dimensional singular decomposition (2DSVD) has been widely used for image processing tasks, such as image reconstruction, classification, and clustering. However, traditional 2DSVD algorithm is based on the mean square error (MSE) loss, which is sensitive to outliers. To overcome this problem, we propose a robust 2DSVD framework based on a generalized kernel risk sensitive loss (GKRSL-2DSVD) which is more robust to noise and and outliers. Since the proposed objective function is non-convex, a majorization-minimization algorithm is developed to efficiently solve it with guaranteed convergence. The proposed framework has inherent properties of processing non-centered data, rotational invariant, being easily extended to higher order spaces. Experimental results on public databases demonstrate that the performance of the proposed method on different applications significantly outperforms that of all the benchmarks.
One of the most important problems in regression-based error model is modeling the complex representation error caused by various corruptions and environment changes in images. For example, in robust face recognition, images are often affected by var ying types and levels of corruptions, such as random pixel corruptions, block occlusions, or disguises. However, existing works are not robust enough to solve this problem due to they cannot model the complex corrupted errors very well. In this paper, we address this problem by a unified sparse weight learning and low-rank approximation regression model, which enables the random noises and contiguous occlusions in images to be treated simultaneously. For the random noise, we define a generalized correntropy (GC) function to match the error distribution. For the structured error caused by occlusions or disguises, we propose a GC function based rank approximation to measure the rank of error matrices. Since the proposed objective function is non-convex, an effective iterative optimization algorithm is developed to achieve the optimal weight learning and low-rank approximation. Extensive experimental results on three public face databases show that the proposed model can fit the error distribution and structure very well, thus obtain better recognition accuracies in comparison with the existing methods.
Traditional tensor decomposition methods, e.g., two dimensional principal component analysis and two dimensional singular value decomposition, that minimize mean square errors, are sensitive to outliers. To overcome this problem, in this paper we pro pose a new robust tensor decomposition method using generalized correntropy criterion (Corr-Tensor). A Lagrange multiplier method is used to effectively optimize the generalized correntropy objective function in an iterative manner. The Corr-Tensor can effectively improve the robustness of tensor decomposition with the existence of outliers without introducing any extra computational cost. Experimental results demonstrated that the proposed method significantly reduces the reconstruction error on face reconstruction and improves the accuracies on handwritten digit recognition and facial image clustering.
Current orthogonal matching pursuit (OMP) algorithms calculate the correlation between two vectors using the inner product operation and minimize the mean square error, which are both suboptimal when there are non-Gaussian noises or outliers in the o bservation data. To overcome these problems, a new OMP algorithm is developed based on the information theoretic learning (ITL), which is built on the following new techniques: (1) an ITL-based correlation (ITL-Correlation) is developed as a new similarity measure which can better exploit higher-order statistics of the data, and is robust against many different types of noise and outliers in a sparse representation framework; (2) a non-second order statistic measurement and minimization method is developed to improve the robustness of OMP by overcoming the limitation of Gaussianity inherent in cost function based on second-order moments. The experimental results on both simulated and real-world data consistently demonstrate the superiority of the proposed OMP algorithm in data recovery, image reconstruction, and classification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا