ترغب بنشر مسار تعليمي؟ اضغط هنا

For the task of metal artifact reduction (MAR), although deep learning (DL)-based methods have achieved promising performances, most of them suffer from two problems: 1) the CT imaging geometry constraint is not fully embedded into the network during training, leaving room for further performance improvement; 2) the model interpretability is lack of sufficient consideration. Against these issues, we propose a novel interpretable dual domain network, termed as InDuDoNet, which combines the advantages of model-driven and data-driven methodologies. Specifically, we build a joint spatial and Radon domain reconstruction model and utilize the proximal gradient technique to design an iterative algorithm for solving it. The optimization algorithm only consists of simple computational operators, which facilitate us to correspondingly unfold iterative steps into network modules and thus improve the interpretablility of the framework. Extensive experiments on synthesized and clinical data show the superiority of our InDuDoNet. Code is available in url{https://github.com/hongwang01/InDuDoNet}.%method on the tasks of MAR and downstream multi-class pelvic fracture segmentation.
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations. Despite of the success of previous works, explorations on an effective training strategy for the saliency network and accurate matches be tween image-level annotations and salient objects are still inadequate. In this work, 1) we propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions, liberating the saliency network from error-prone propagation caused by pseudo labels. 2) we prove that even a much smaller dataset (merely 1.8% of ImageNet) with well-matched annotations can facilitate models to achieve better performance as well as generalizability. This sheds new light on the development of WSOD and encourages more contributions to the community. Comprehensive experiments demonstrate that our method outperforms all the existing WSOD methods by adopting the self-calibrated strategy only. Steady improvements are further achieved by training on the proposed dataset. Additionally, our method achieves 94.7% of the performance of fully-supervised methods on average. And what is more, the fully supervised models adopting our predicted results as ground truths achieve successful results (95.6% for BASNet and 97.3% for ITSD on F-measure), while costing only 0.32% of labeling time for pixel-level annotation.
Microbes are essentially yet convolutedly linked with human lives on the earth. They critically interfere in different physiological processes and thus influence overall health status. Studying microbial species is used to be constrained to those tha t can be cultured in the lab. But it excluded a huge portion of the microbiome that could not survive on lab conditions. In the past few years, the culture-independent metagenomic sequencing enabled us to explore the complex microbial community coexisting within and on us. Metagenomics has equipped us with new avenues of investigating the microbiome, from studying a single species to a complex community in a dynamic ecosystem. Thus, identifying the involved microbes and their genomes becomes one of the core tasks in metagenomic sequencing. Metagenome-assembled genomes are groups of contigs with similar sequence characteristics from de novo assembly and could represent the microbial genomes from metagenomic sequencing. In this paper, we reviewed a spectrum of tools for producing and annotating metagenome-assembled genomes from metagenomic sequencing data and discussed their technical and biological perspectives.
Federated learning is an emerging research paradigm for enabling collaboratively training deep learning models without sharing patient data. However, the data from different institutions are usually heterogeneous across institutions, which may reduce the performance of models trained using federated learning. In this study, we propose a novel heterogeneity-aware federated learning method, SplitAVG, to overcome the performance drops from data heterogeneity in federated learning. Unlike previous federated methods that require complex heuristic training or hyper parameter tuning, our SplitAVG leverages the simple network split and feature map concatenation strategies to encourage the federated model training an unbiased estimator of the target data distribution. We compare SplitAVG with seven state-of-the-art federated learning methods, using centrally hosted training data as the baseline on a suite of both synthetic and real-world federated datasets. We find that the performance of models trained using all the comparison federated learning methods degraded significantly with the increasing degrees of data heterogeneity. In contrast, SplitAVG method achieves comparable results to the baseline method under all heterogeneous settings, that it achieves 96.2% of the accuracy and 110.4% of the mean absolute error obtained by the baseline in a diabetic retinopathy binary classification dataset and a bone age prediction dataset, respectively, on highly heterogeneous data partitions. We conclude that SplitAVG method can effectively overcome the performance drops from variability in data distributions across institutions. Experimental results also show that SplitAVG can be adapted to different base networks and generalized to various types of medical imaging tasks.
With leveraging the weight-sharing and continuous relaxation to enable gradient-descent to alternately optimize the supernet weights and the architecture parameters through a bi-level optimization paradigm, textit{Differentiable ARchiTecture Search} (DARTS) has become the mainstream method in Neural Architecture Search (NAS) due to its simplicity and efficiency. However, more recent works found that the performance of the searched architecture barely increases with the optimization proceeding in DARTS. In addition, several concurrent works show that the NAS could find more competitive architectures without labels. The above observations reveal that the supervision signal in DARTS may be a poor indicator for architecture optimization, inspiring a foundational question: instead of using the supervision signal to perform bi-level optimization, textit{can we find high-quality architectures textbf{without any training nor labels}}? We provide an affirmative answer by customizing the NAS as a network pruning at initialization problem. By leveraging recent techniques on the network pruning at initialization, we designed a FreeFlow proxy to score the importance of candidate operations in NAS without any training nor labels, and proposed a novel framework called textit{training and label free neural architecture search} (textbf{FreeNAS}) accordingly. We show that, without any training nor labels, FreeNAS with the proposed FreeFlow proxy can outperform most NAS baselines. More importantly, our framework is extremely efficient, which completes the architecture search within only textbf{3.6s} and textbf{79s} on a single GPU for the NAS-Bench-201 and DARTS search space, respectively. We hope our work inspires more attempts in solving NAS from the perspective of pruning at initialization.
textit{Differentiable ARchiTecture Search} (DARTS) has recently become the mainstream of neural architecture search (NAS) due to its efficiency and simplicity. With a gradient-based bi-level optimization, DARTS alternately optimizes the inner model w eights and the outer architecture parameter in a weight-sharing supernet. A key challenge to the scalability and quality of the learned architectures is the need for differentiating through the inner-loop optimisation. While much has been discussed about several potentially fatal factors in DARTS, the architecture gradient, a.k.a. hypergradient, has received less attention. In this paper, we tackle the hypergradient computation in DARTS based on the implicit function theorem, making it only depends on the obtained solution to the inner-loop optimization and agnostic to the optimization path. To further reduce the computational requirements, we formulate a stochastic hypergradient approximation for differentiable NAS, and theoretically show that the architecture optimization with the proposed method, named iDARTS, is expected to converge to a stationary point. Comprehensive experiments on two NAS benchmark search spaces and the common NAS search space verify the effectiveness of our proposed method. It leads to architectures outperforming, with large margins, those learned by the baseline methods.
Optical cat state plays an essential role in quantum computation and quantum metrology. Here, we experimentally quantify quantum coherence of an optical cat state by means of relative entropy and l_1 norm of coherence in Fock basis based on the prepa red optical cat state at rubidium D1 line. By transmitting the optical cat state through a lossy channel, we also demonstrate the robustness of quantum coherence of optical cat state in the presence of loss, which is different from the decoherence properties of fidelity and Wigner function negativity of the optical cat state. Our results confirm that quantum coherence of optical cat states is robust against loss and pave the way for the application with optical cat states.
In order to protect intellectual property against untrusted foundry, many logic-locking schemes have been developed. The main idea of logic locking is to insert a key-controlled block into a circuit to make the circuit function incorrectly without ri ght keys. However, in the case that the algorithm implemented by the circuit is naturally fault-tolerant or self-correcting, existing logic-locking schemes do not affect the system performance much even if wrong keys are used. One example is low-density parity-check (LDPC) error-correcting decoder, which has broad applications in digital communications and storage. This paper proposes two algorithmic-level obfuscation methods for LDPC decoders. By modifying the decoding process and locking the stopping criterion, our new designs substantially degrade the decoder throughput and/or error-correcting performance when the wrong key is used. Besides, our designs are also resistant to the SAT, AppSAT and removal attacks. For an example LDPC decoder, our proposed methods reduce the throughput to less than 1/3 and/or increase the decoder error rate by at least two orders of magnitude with only 0.33% area overhead.
This paper unveils the importance of intelligent reflecting surface (IRS) in a wireless powered sensor network (WPSN). Specifically, a multi-antenna power station (PS) employs energy beamforming to provide wireless charging for multiple Internet of T hings (IoT) devices, which utilize the harvested energy to deliver their own messages to an access point (AP). Meanwhile, an IRS is deployed to enhance the performances of wireless energy transfer (WET) and wireless information transfer (WIT) by intelligently adjusting the phase shift of each reflecting element. To evaluate the performance of this IRS assisted WPSN, we are interested in maximizing its system sum throughput to jointly optimize the energy beamforming of the PS, the transmission time allocation, as well as the phase shifts of the WET and WIT phases. The formulated problem is not jointly convex due to the multiple coupled variables. To deal with its non-convexity, we first independently find the phase shifts of the WIT phase in closed-form. We further propose an alternating optimization (AO) algorithm to iteratively solve the sum throughput maximization problem. To be specific, a semidefinite programming (SDP) relaxation approach is adopted to design the energy beamforming and the time allocation for given phase shifts of WET phase, which is then optimized for given energy beamforming and time allocation. Moreover, we propose an AO low-complexity scheme to significantly reduce the computational complexity incurred by the SDP relaxation, where the optimal closed-form energy beamforming, time allocation, and phase shifts of the WET phase are derived. Finally, numerical results are demonstrated to validate the effectiveness of the proposed algorithm, and highlight the beneficial role of the IRS in comparison to the benchmark schemes.
Integration testing is a very important step in software testing. Existing methods evaluate the stubbing cost for class integration test orders by considering only the interclass direct relationships such as inheritance, aggregation, and association, but they omit the interclass indirect relationship caused by control coupling, which can also affect the test orders and the stubbing cost. In this paper, we introduce an integration test order strategy to consider control coupling. We advance the concept of transitive relationship to describe this kind of interclass dependency and propose a new measurement method to estimate the complexity of control coupling, which is the complexity of stubs created for a transitive relationship. We evaluate our integration test order strategy on 10 programs on various scales. The results show that considering the transitive relationship when generating class integration test orders can significantly reduce the stubbing cost for most programs and that our integration test order strategy obtains satisfactory results more quickly than other methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا