ﻻ يوجد ملخص باللغة العربية
Microbes are essentially yet convolutedly linked with human lives on the earth. They critically interfere in different physiological processes and thus influence overall health status. Studying microbial species is used to be constrained to those that can be cultured in the lab. But it excluded a huge portion of the microbiome that could not survive on lab conditions. In the past few years, the culture-independent metagenomic sequencing enabled us to explore the complex microbial community coexisting within and on us. Metagenomics has equipped us with new avenues of investigating the microbiome, from studying a single species to a complex community in a dynamic ecosystem. Thus, identifying the involved microbes and their genomes becomes one of the core tasks in metagenomic sequencing. Metagenome-assembled genomes are groups of contigs with similar sequence characteristics from de novo assembly and could represent the microbial genomes from metagenomic sequencing. In this paper, we reviewed a spectrum of tools for producing and annotating metagenome-assembled genomes from metagenomic sequencing data and discussed their technical and biological perspectives.
With the booming of next generation sequencing technology and its implementation in clinical practice and life science research, the need for faster and more efficient data analysis methods becomes pressing in the field of sequencing. Here we report
The existence of doublets is a key confounder in single-cell RNA sequencing (scRNA-seq) data analysis. Computational methods have been developed for detecting doublets from scRNA-seq data. We developed an R package DoubletCollection to integrate the
Motivation: Bisulphite sequencing enables the detection of cytosine methylation. The sequence of the methylation states of cytosines on any given read forms a methylation pattern that carries substantially more information than merely studying the av
Background: Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The a
This paper introduces a high-throughput software tool framework called {it sam2bam} that enables users to significantly speedup pre-processing for next-generation sequencing data. The sam2bam is especially efficient on single-node multi-core large-me