ترغب بنشر مسار تعليمي؟ اضغط هنا

116 - Meng Xiao , Ziyue Qiao , Yanjie Fu 2021
To advance the development of science and technology, research proposals are submitted to open-court competitive programs developed by government agencies (e.g., NSF). Proposal classification is one of the most important tasks to achieve effective an d fair review assignments. Proposal classification aims to classify a proposal into a length-variant sequence of labels. In this paper, we formulate the proposal classification problem into a hierarchical multi-label classification task. Although there are certain prior studies, proposal classification exhibit unique features: 1) the classification result of a proposal is in a hierarchical discipline structure with different levels of granularity; 2) proposals contain multiple types of documents; 3) domain experts can empirically provide partial labels that can be leveraged to improve task performances. In this paper, we focus on developing a new deep proposal classification framework to jointly model the three features. In particular, to sequentially generate labels, we leverage previously-generated labels to predict the label of next level; to integrate partial labels from experts, we use the embedding of these empirical partial labels to initialize the state of neural networks. Our model can automatically identify the best length of label sequence to stop next label prediction. Finally, we present extensive results to demonstrate that our method can jointly model partial labels, textual information, and semantic dependencies in label sequences, and, thus, achieve advanced performances.
139 - Hao He , Cheng Guo , Meng Xiao 2021
Space-time wave packets can propagate invariantly in free space with arbitrary group velocity thanks to the spatio-temporal correlation. Here it is proved that the space-time wave packets are stable in dispersive media as well and free from the sprea d in time caused by material dispersion. Furthermore, the law of anomalous refraction for space-time wave packets is generalized to the weakly dispersive situation. These results reveal new potential of space-time wave packets for the applications in real dispersive media.
Topological photonics, featured by stable topological edge states resistant to perturbations, has been utilized to design robust integrated devices. Here, we present a study exploring the intriguing topological rotated Weyl physics in a 3D parameter space based on quaternary waveguide arrays on lithium niobate-on-insulator (LNOI) chips. Unlike previous works that focus on the Fermi arc surface states of a single Weyl structure, we can experimentally construct arbitrary interfaces between two Weyl structures whose orientations can be freely rotated in the synthetic parameter space. This intriguing system was difficult to realize in usual 3D Weyl semimetals due to lattice mismatch. We found whether the interface can host gapless topological interface states (TISs) or not, is determined by the relative rotational directions of the two Weyl structures. In the experiment, we have probed the local characteristics of the TISs through linear optical transmission and nonlinear second harmonic generation. Our study introduces a novel path to explore topological photonics on LNOI chips and various applications in integrated nonlinear and quantum optics.
A dynamically-modulated ring system with frequency as a synthetic dimension has been shown to be a powerful platform to do quantum simulation and explore novel optical phenomena. Here we propose synthetic honeycomb lattice in a one-dimensional ring a rray under dynamic modulations, with the extra dimension being the frequency of light. Such system is highly re-configurable with modulation. Various physical phenomena associated with graphene including Klein tunneling, valley-dependent edge states, effective magnetic field, as well as valley-dependent Lorentz force can be simulated in this lattice, which exhibits important potentials for manipulating photons in different ways. Our work unveils a new platform for constructing the honeycomb lattice in a synthetic space, which holds complex functionalities and could be important for optical signal processing as well as quantum computing.
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences are presented for this intriguing topological observable, owing to the presence of various challenges in solid-state systems. Here, using a three-dimensional acoustic topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented controllability over wave propagations.
A quadrupole topological insulator, being one higher-order topological insulator with nontrivial quadrupole quantization, has been intensely investigated very recently. However, the tight-binding model proposed for such emergent topological insulator s demands both positive and negative hopping coefficients, which imposes an obstacle in practical realizations. Here we introduce a feasible approach to design the sign of hopping in acoustics, and construct the first acoustic quadrupole topological insulator that stringently emulates the tight-binding model. The inherent hierarchy quadrupole topology has been experimentally confirmed by detecting the acoustic responses at the bulk, edge and corner of the sample. Potential applications can be anticipated for the topologically robust in-gap states, such as acoustic sensing and energy trapping.
410 - Huahui Qiu , Meng Xiao , Fan Zhang 2020
Discovering new topological phases of matter is a major theme in fundamental physics and materials science. Dirac semimetal provides an exceptional platform for exploring topological phase transitions under symmetry breaking. Recent theoretical studi es have revealed that a three-dimensional Dirac semimetal can harbor fascinating hinge states, a higher-order topological manifestation not known before. However, its realization in experiment is yet to be achieved. In this Letter, we propose a minimum model to construct a spinless higher-order Dirac semimetal protected by C_6v symmetry. By breaking different symmetries, this parent phase transitions into a variety of novel topological phases including higher-order topological insulator, higher-order Weyl semimetal, and higher-order nodal-ring semimetal. Furthermore, for the first time, we experimentally realize this unprecedented higher-order topological phase in a sonic crystal and present an unambiguous observation of the desired hinge states via momentun-space spectroscopy and real-space visualization. Our findings may offer new opportunities to manipulate classical waves such as sound and light.
Suppose $k ge 2$ is an integer. Let $Y_k$ be the poset with elements $x_1, x_2, y_1, y_2, ldots, y_{k-1}$ such that $y_1 < y_2 < cdots < y_{k-1} < x_1, x_2$ and let $Y_k$ be the same poset but all relations reversed. We say that a family of subsets o f $[n]$ contains a copy of $Y_k$ on consecutive levels if it contains $k+1$ subsets $F_1, F_2, G_1, G_2, ldots, G_{k-1}$ such that $G_1subset G_2 subset cdots subset G_{k-1} subset F_1, F_2$ and $|F_1| = |F_2| = |G_{k-1}|+1 =|G_{k-2}|+ 2= cdots = |G_{1}|+k-1$. If both $Y_k$ and $Y_k$ on consecutive levels are forbidden, the size of the largest such family is denoted by $mathrm{La}_{mathrm{c}}(n, Y_k, Y_k)$. In this paper, we will determine the exact value of $mathrm{La}_{mathrm{c}}(n, Y_k, Y_k)$.
The Turan number of a graph H, ex(n,H), is the maximum number of edges in a graph on n vertices which does not have H as a subgraph. Let P_k be the path with k vertices, the square P^2_k of P_k is obtained by joining the pairs of vertices with distan ce one or two in P_k. The powerful theorem of ErdH{o}s, Stone and Simonovits determines the asymptotic behavior of ex(n,P^2_k). In the present paper, we determine the exact value of ex(n,P^2_5) and ex(n,P^2_6) and pose a conjecture for the exact value of ex(n,P^2_k).
Recently, we witnessed a tremendous effort to conquer the realm of acoustics as a possible playground to test with sound waves topologically protected wave propagation. Acoustics differ substantially from photonic and electronic systems since longitu dinal sound waves lack intrinsic spin polarization and breaking the time-reversal symmetry requires additional complexities that both are essential in mimicking the quantum effects leading to topologically robust sound propagation. In this article, we review the latest efforts to explore with sound waves topological states of quantum matter in two- and three-dimensional systems where we discuss how spin and valley degrees of freedom appear as highly novel ingredients to tailor the flow of sound in the form of one-way edge modes and defect-immune protected acoustic waves. Both from a theoretical stand point and based on contemporary experimental verifications, we summarize the latest advancements of the flourishing research frontier on topological sound.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا