ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show that at an conformally-invariant critical point of O(3) transition, the entanglement entropy exhibits universal scaling behavior of area law with logarithmic corner corrections and the obtained correction exponent represents the current central charge of the critical theory. Then we move on to the deconfined quantum critical point, where although we still observe similar scaling behavior but with a very different exponent. Namely, the corner correction exponent is found to be negative. Such a negative exponent is in sharp contrast with positivity condition of the Renyi entanglement entropy, which holds for unitary conformal field theories. Our results unambiguously reveal fundamental differences between DQC and QCPs described by unitary CFTs.
We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)$d$ in the $J$-$Q_3$ model via large-scale quantum Monte C arlo simulations. We show that the disorder parameter for U(1) spin rotation symmetry exhibits perimeter scaling with a logarithmic correction associated with sharp corners of the region, as generally expected for a conformally-invariant critical point. However, for large rotation angle the universal coefficient of the logarithmic corner correction becomes negative, which is not allowed in any unitary conformal field theory. We also extract the current central charge from the small rotation angle scaling, whose value is much smaller than that of the free theory.
In this work we investigate the decorated domain wall construction in bosonic group-cohomology symmetry-protected topological (SPT) phases and related quantum anomalies in bosonic topological phases. We first show that a general decorated domain wall construction can be described mathematically as an Atiyah-Hirzebruch spectral sequence, where the terms on the $E_2$ page correspond to decorations by lower-dimensional SPT states at domain wall junctions. For bosonic group-cohomology SPT phases, the spectral sequence becomes the Lyndon-Hochschild-Serre (LHS) spectral sequence for ordinary group cohomology. We then discuss the physical interpretations of the differentials in the spectral sequence, particularly in the context of anomalous SPT phases and symmetry-enriched gauge theories. As the main technical result, we obtain a full description of the LHS spectral sequence concretely at the cochain level. The explicit formulae are then applied to explain Lieb-Schultz-Mattis theorems for SPT phases, and also derive a new LSM theorem for easy-plane spin model in a $pi$ flux lattice. We also revisit the classifications of symmetry-enriched 2D and 3D Abelian gauge theories using our results.
149 - Qing-Rui Wang , Meng Cheng 2021
We propose a general construction of commuting projector lattice models for 2D and 3D topological phases enriched by U(1) symmetry, with finite-dimensional Hilbert space per site. The construction starts from a commuting projector model of the topolo gical phase and decorates U(1) charges to the state space in a consistent manner. We show that all 2D U(1) symmetry-enriched topological phases which allow gapped boundary without breaking symmetry, can be realized through our construction. We also construct a large class of 3D topological phases with U(1) symmetry fractionalized on particles or loop excitations.
106 - Matthew F. Lapa , Meng Cheng , 2021
We propose a platform for braiding Majorana non-Abelian anyons based on a heterostructure between a $d$-wave high-$T_c$ superconductor and a quantum spin-Hall insulator. It has been recently shown that such a setup for a quantum spin-Hall insulator l eads to a pair of Majorana zero modes at each corner of the sample, and thus can be regarded as a higher-order topological superconductor. We show that upon applying a Zeeman field in the region, these Majorana modes split in space and can be manipulated for braiding processes by tuning the field and pairing phase. We show that such a setup can achieve full braiding, exchanging, and arbitrary phase gates (including the $pi/8$ magic gates) of the Majorana zero modes, all of which are robust and protected by symmetries. As many of the ingredients of our proposed platform have been realized in recent experiments, our results provide a new route toward universal topological quantum computation.
We study disorder operator, defined as a symmetry transformation applied to a finite region, across a continuous quantum phase transition in $(2+1)d$. We show analytically that at a conformally-invariant critical point with U(1) symmetry, the disorde r operator with a small U(1) rotation angle defined on a rectangle region exhibits power-law scaling with the perimeter of the rectangle. The exponent is proportional to the current central charge of the critical theory. Such a universal scaling behavior is due to the sharp corners of the region and we further obtain a general formula for the exponent when the corner is nearly smooth. To probe the full parameter regime, we carry out systematic computation of the U(1) disorder parameter in the square lattice Bose-Hubbard model across the superfluid-insulator transition with large-scale quantum Monte Carlo simulations, and confirm the presence of the universal corner correction. The exponent of the corner term determined from numerical simulations agrees well with the analytical predictions.
Result relevance prediction is an essential task of e-commerce search engines to boost the utility of search engines and ensure smooth user experience. The last few years eyewitnessed a flurry of research on the use of Transformer-style models and de ep text-match models to improve relevance. However, these two types of models ignored the inherent bipartite network structures that are ubiquitous in e-commerce search logs, making these models ineffective. We propose in this paper a novel Second-order Relevance, which is fundamentally different from the previous First-order Relevance, to improve result relevance prediction. We design, for the first time, an end-to-end First-and-Second-order Relevance prediction model for e-commerce item relevance. The model is augmented by the neighborhood structures of bipartite networks that are built using the information of user behavioral feedback, including clicks and purchases. To ensure that edges accurately encode relevance information, we introduce external knowledge generated from BERT to refine the network of user behaviors. This allows the new model to integrate information from neighboring items and queries, which are highly relevant to the focus query-item pair under consideration. Results of offline experiments showed that the new model significantly improved the prediction accuracy in terms of human relevance judgment. An ablation study showed that the First-and-Second-order model gained a 4.3% average gain over the First-order model. Results of an online A/B test revealed that the new model derived more commercial benefits compared to the base model.
In recent years, new phases of matter that are beyond the Landau paradigm of symmetry breaking are mountaining, and to catch up with this fast development, new notions of global symmetry are introduced. Among them, the higher-form symmetry, whose sym metry charges are spatially extended, can be used to describe topologically ordered phases as the spontaneous breaking of the symmetry, and consequently unify the unconventional and conventional phases under the same conceptual framework. However, such conceptual tools have not been put into quantitative test except for certain solvable models, therefore limiting its usage in the more generic quantum manybody systems. In this work, we study Z2 higher-form symmetry in a quantum Ising model, which is dual to the global (0-form) Ising symmetry. We compute the expectation value of the Ising disorder operator, which is a non-local order parameter for the higher-form symmetry, analytically in free scalar theories and through unbiased quantum Monte Carlo simulations for the interacting fixed point in (2+1)d. From the scaling form of this extended object, we confirm that the higher-form symmetry is indeed spontaneously broken inside the paramagnetic, or quantum disordered phase (in the Landau sense), but remains symmetric in the ferromagnetic/ordered phase. At the Ising critical point, we find that the higher-form symmetry is also spontaneously broken, even though the 0-form symmetry is preserved. We discuss examples where both the global 0-form symmetry and the dual higher-form symmetry are preserved, in systems with a codimension-1 manifold of gapless points in momentum space. These results provide non-trivial working examples of higher-form symmetry operators, including the first computation of one-form order parameter in an interacting conformal field theory, and open the avenue for their generic implementation in quantum many-body systems.
In three dimensions, gapped phases can support fractonic quasiparticle excitations, which are either completely immobile or can only move within a low-dimensional submanifold, a peculiar topological phenomenon going beyond the conventional framework of topological quantum field theory. In this work we explore fractonic topological phases using three-dimensional coupled wire constructions, which have proven to be a successful tool to realize and characterize topological phases in two dimensions. We find that both gapped and gapless phases with fractonic excitations can emerge from the models. In the gapped case, we argue that fractonic excitations are mobile along the wire direction, but their mobility in the transverse plane is generally reduced. We show that the excitations in general have infinite-order fusion structure, distinct from previously known gapped fracton models. Like the 2D coupled wire constructions, many models exhibit gapless (or even chiral) surface states, which can be described by infinite-component Luttinger liquids. However, the universality class of the surface theory strongly depends on the surface orientation, thus revealing a new type of bulk-boundary correspondence unique to fracton phases.
2+1D multi-component $U(1)$ gauge theories with a Chern-Simons (CS) term provide a simple and complete characterization of 2+1D Abelian topological orders. In this paper, we extend the theory by taking the number of component gauge fields to infinity and find that they can describe interesting types of 3+1D fractonic order. Fractonic describes the peculiar phenomena that point excitations in certain strongly interacting systems either cannot move at all or are only allowed to move in a lower dimensional sub-manifold. In the simplest cases of infinite-component CS gauge theory, different components do not couple to each other and the theory describes a decoupled stack of 2+1D fractional Quantum Hall systems with quasi-particles moving only in 2D planes -- hence a fractonic system. We find that when the component gauge fields do couple through the CS term, more varieties of fractonic orders are possible. For example, they may describe foliated fractonic systems for which increasing the system size requires insertion of nontrivial 2+1D topological states. Moreover, we find examples which lie beyond the foliation framework, characterized by 2D excitations of infinite order and braiding statistics that are not strictly local.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا