ترغب بنشر مسار تعليمي؟ اضغط هنا

In the hierarchical scenario of structure formation, galaxy clusters are the ultimate virialised products in mass and time. Hot baryons in the intracluster medium (ICM) and cold baryons in galaxies inhabit a dark matter dominated halo. Internal proce sses, accretion, and mergers can perturb the equilibrium, which is established only at later times. However, the cosmic time when thermalisation is effective is still to be assessed. Here we show that massive clusters in the observed universe attained an advanced thermal equilibrium $sim~1.8~text{Gyr}$ ago, at redshift $z =0.14pm0.06$, when the universe was $11.7pm0.7~text{Gyr}$ old. Hot gas is mostly thermalised after the time when cosmic densities of matter and dark energy match. We find in a statistically nearly complete and homogeneous sample of 120 clusters from the {it Planck} Early Sunyaev-Zeldovich (ESZ) sample that the kinetic energy traced by the galaxy velocity dispersion is a faithful probe of the gravitational energy since a look back time of at least $sim5.4~text{Gyr}$, whereas the efficiency of hot gas in converting kinetic to thermal energy, as measured through X-ray observations in the core-excised area within $r_{500}$, steadily increases with time. The evolution is detected at the $sim 98$ per cent probability level. Our results demonstrate that halo mass accretion history plays a larger role for cluster thermal equilibrium than radiative physics. The evolution of hot gas is strictly connected to the cosmic structure formation.
Unbiased and precise mass calibration of galaxy clusters is crucial to fully exploit galaxy clusters as cosmological probes. Stacking of weak lensing signal allows us to measure observable-mass relations down to less massive halos halos without extra polation. We propose a Bayesian inference method to constrain the intrinsic scatter of the mass proxy in stacked analyses. The scatter of the stacked data is rescaled with respect to the individual scatter based on the number of binned clusters. We apply this method to the galaxy clusters detected with the AMICO (Adaptive Matched Identifier of Clustered Objects) algorithm in the third data release of the Kilo-Degree Survey. The results confirm the optical richness as a low scatter mass proxy. Based on the optical richness and the calibrated weak lensing mass-richness relation, mass of individual objects down to ~10^13 solar masses can be estimated with a precision of ~20 per cent.
Scaling relations trace the formation and evolution of galaxy clusters. We exploited multi-wavelength surveys -- the XXL survey at emph{XMM-Newton} in the X-ray band, and the Hyper Suprime-Cam Subaru Strategic Program for optical weak lensing -- to s tudy an X-ray selected, complete sample of clusters and groups. The scalings of gas mass, temperature, and soft-band X-ray luminosity with the weak lensing mass show imprints of radiative cooling and AGN feedback in groups. From the multi-variate analysis, we found some evidence for steeper than self-similar slopes for gas mass ($beta_{m_text{g}|m}=1.73 pm0.80$) and luminosity ($beta_{l|m}=1.91pm0.94$) and a nearly self-similar slope for the temperature ($beta_{t|m}=0.78pm0.43$). Intrinsic scatters of X-ray properties appear to be positively correlated at a fixed mass (median correlation factor $rho_{X_1X_2|m}sim0.34$) due to dynamical state and merger history of the halos. Positive correlations with the weak lensing mass (median correlation factor $rho_{m_text{wl}X|m}sim0.35$) can be connected to triaxiality and orientation. Comparison of weak lensing and hydrostatic masses suggests a small role played by non-thermal pressure support ($9pm17%$).
Context. Scaling relations between cluster properties embody the formation and evolution of cosmic structure. Intrinsic scatters and correlations between X-ray properties are determined from merger history, baryonic processes, and dynamical state. Aims. We look for an unbiased measurement of the scatter covariance matrix between the three main X-ray observable quantities attainable in large X-ray surveys -- temperature, luminosity, and gas mass. This also gives us the cluster property with the lowest conditional intrinsic scatter at fixed mass. Methods. Intrinsic scatters and correlations can be measured under the assumption that the observable properties of the intra-cluster medium hosted in clusters are log-normally distributed around power-law scaling relations. The proposed method is self-consistent, based on minimal assumptions, and requires neither the external calibration by weak lensing, dynamical, or hydrostatic masses nor the knowledge of the mass completeness. Results. We analyzed the 100 brightest clusters detected in the XXL Survey and their X-ray properties measured within a fixed radius of 300 kpc. The gas mass is the less scattered proxy (~8%). The temperature (~20%) is intrinsically less scattered than the luminosity (~30%) but it is measured with a larger observational uncertainty. We found some evidence that gas mass, temperature and luminosity are positively correlated. Time-evolutions are in agreement with the self-similar scenario, but the luminosity-temperature and the gas mass-temperature relations are steeper. Conclusions. Positive correlations between X-ray properties can be determined by the dynamical state and the merger history of the halos. The slopes of the scaling relations are affected by radiative processes.
Galaxy clusters form at the highest density nodes of the cosmic web. The clustering of massive halos is enhanced relative to the general mass distribution and matter beyond the virial region is strongly correlated to the halo mass (halo bias). Cluste ring can be further enhanced depending on halo properties other than mass (secondary bias). The questions of how much and why the regions surrounding rich clusters are over-dense are still unanswered. Here, we report the analysis of the environment bias in a sample of very massive clusters, selected through the Sunyaev-Zeldovich effect by the Planck mission. We present the first detection of the correlated dark matter associated to a single cluster, PSZ2 G099.86+58.45. The system is extremely rare in the current paradigm of structure formation. The gravitational lensing signal was traced up to 30 megaparsecs with high signal-to-noise ratio ~3.4. The measured shear is very large and points at environment matter density in notable excess of the cosmological mean. The boosting of the correlated dark matter density around high mass halos can be very effective. Together with ensemble studies of the large scale structure, lensing surveys can picture the surroundings of single haloes.
74 - Mauro Sereno 2018
The $Lambda$CDM model of structure formation makes strong predictions on concentration and shape of DM (dark matter) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric te st of the $Lambda$CDM model. Accurate and precise measurements needs a full three-dimensional analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular CLASH (Cluster Lensing And Supernova survey with Hubble) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev-Zeldovich effect. The cluster shapes and concentrations are consistent with $Lambda$CDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being not so effective in making halos rounder.
111 - Keiichi Umetsu 2018
We reconstruct the two-dimensional (2D) matter distributions in 20 high-mass galaxy clusters selected from the CLASH survey by using the new approach of performing a joint weak lensing analysis of 2D shear and azimuthally averaged magnification measu rements. This combination allows for a complete analysis of the field, effectively breaking the mass-sheet degeneracy. In a Bayesian framework, we simultaneously constrain the mass profile and morphology of each individual cluster assuming an elliptical Navarro-Frenk-White halo characterized by the mass, concentration, projected axis ratio, and position angle of the projected major axis.. We find that spherical mass estimates of the clusters from azimuthally averaged weak-lensing measurements in previous work are in excellent agreement with our results from a full 2D analysis. Combining all 20 clusters in our sample, we detect the elliptical shape of weak-lensing halos at the $5sigma$ significance level within a scale of 2Mpc$/h$. The median projected axis ratio is $0.67pm 0.07$ at a virial mass of $M_mathrm{vir}=(15.2pm 2.8) times 10^{14} M_odot$, which is in agreement with theoretical predictions of the standard collisionless cold dark matter model. We also study misalignment statistics of the brightest cluster galaxy, X-ray, thermal Sunyaev-Zeldovich effect, and strong-lensing morphologies with respect to the weak-lensing signal. Among the three baryonic tracers studied here, we find that the X-ray morphology is best aligned with the weak-lensing mass distribution, with a median misalignment angle of $21pm 7$ degrees. We also conduct a stacked quadrupole shear analysis assuming that the X-ray major axis is aligned with that of the projected mass distribution. This yields a consistent axis ratio of $0.67pm 0.10$, suggesting again a tight alignment between the intracluster gas and dark matter.
The possibly unbiased selection process in surveys of the Sunyaev Zeldovich effect can unveil new populations of galaxy clusters. We performed a weak lensing analysis of the PSZ2LenS sample, i.e. the PSZ2 galaxy clusters detected by the Planck missio n in the sky portion covered by the lensing surveys CFHTLenS and RCSLenS. PSZ2LenS consists of 35 clusters and it is a statistically complete and homogeneous subsample of the PSZ2 catalogue. The Planck selected clusters appear to be unbiased tracers of the massive end of the cosmological haloes. The mass concentration relation of the sample is in excellent agreement with predictions from the Lambda cold dark matter model. The stacked lensing signal is detected at 14 sigma significance over the radial range 0.1<R<3.2 Mpc/h, and is well described by the cuspy dark halo models predicted by numerical simulations. We confirmed that Planck estimated masses are biased low by b_SZ= 27+-11(stat)+-8(sys) per cent with respect to weak lensing masses. The bias is higher for the cosmological subsample, b_SZ= 40+-14+-(stat)+-8(sys) per cent.
Multi-wavelength techniques can probe the distribution and the physical properties of baryons and dark matter in galaxy clusters from the inner regions out to the peripheries. We present a full three-dimensional analysis combining strong and weak len sing, X-ray surface brightness and temperature, and the Sunyaev-Zeldovich effect. The method is applied to MACS J1206.2-0847, a remarkably regular, face-on, massive, M_{200}=(1.1+-0.2)*10^{15}M_Sun/h, cluster at z=0.44. The measured concentration, c_{200}=6.3+-1.2, and the triaxial shape are common to halos formed in a LCDM scenario. The gas has settled in and follows the shape of the gravitational potential, which is evidence of pressure equilibrium via the shape theorem. There is no evidence for significant non-thermal pressure and the equilibrium is hydrostatic.
430 - Keiichi Umetsu 2015
We perform a 3D multi-probe analysis of the rich galaxy cluster A1689 by combining improved weak-lensing data from new BVRiz Subaru/Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev-Zeldovich effect (SZE) data sets. We reconstruct the projected matter distribution from a joint weak-lensing analysis of 2D shear and azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet degeneracy. The resulting mass distribution reveals elongation with axis ratio ~0.7 in projection. When assuming a spherical halo, our full weak-lensing analysis yields a projected concentration of $c_{200c}^{2D}=8.9pm 1.1$ ($c_{vir}^{2D}sim 11$), consistent with and improved from earlier weak-lensing work. We find excellent consistency between weak and strong lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data with minimal geometric assumptions. We show that the data favor a triaxial geometry with minor-major axis ratio 0.39+/-0.15 and major axis closely aligned with the line of sight (22+/-10 deg). We obtain $M_{200c}=(1.2pm 0.2)times 10^{15} M_{odot}/h$ and $c_{200c}=8.4pm 1.3$, which overlaps with the $>1sigma$ tail of the predicted distribution. The shape of the gas is rounder than the underlying matter but quite elongated with minor-major axis ratio 0.60+/-0.14. The gas mass fraction within 0.9Mpc is 10^{+3}_{-2}%. The thermal gas pressure contributes to ~60% of the equilibrium pressure, indicating a significant level of non-thermal pressure support. When compared to Plancks hydrostatic mass estimate, our lensing measurements yield a spherical mass ratio of $M_{Planck}/M_{GL}=0.70pm 0.15$ and $0.58pm 0.10$ with and without corrections for lensing projection effects, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا