ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a family of criteria to detect quantum non-Gaussian states of a harmonic oscillator, that is, quantum states that can not be expressed as a convex mixture of Gaussian states. In particular we prove that, for convex mixtures of Gaussian s tates, the value of the Wigner function at the origin of phase space is bounded from below by a non-zero positive quantity, which is a function only of the average number of excitations (photons) of the state. As a consequence, if this bound is violated then the quantum state must be quantum non-Gaussian. We show that this criterion can be further generalized by considering additional Gaussian operations on the state under examination. We then apply these criteria to various non-Gaussian states evolving in a noisy Gaussian channel, proving that the bounds are violated for high values of losses, and thus also for states characterized by a positive Wigner function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا