ترغب بنشر مسار تعليمي؟ اضغط هنا

A useful concept in the development of physical models on the $kappa$-Minkowski noncommutative spacetime is that of a curved momentum space. This structure is not unique: several inequivalent momentum space geometries have been identified. Some are a ssociated to a different assumption regarding the signature of spacetime (i.e. Lorentzian vs. Euclidean), but there are inequivalent momentum spaces that can be associated to the same signature and even the same group of symmetries. Moreover, in the literature there are two approaches to the definition of these momentum spaces, one based on the right- (or left-)invariant metrics on the Lie group generated by the $kappa$-Minkowski algebra. The other is based on the construction of $5$-dimensional matrix representation of the $kappa$-Minkowski coordinate algebra. Neither approach leads to a unique construction. Here, we find the relation between these two approaches and introduce a unified approach, capable of describing all momentum spaces, and identify the corresponding quantum group of spacetime symmetries. We reproduce known results and get a few new ones. In particular, we describe the three momentum spaces associated to the $kappa$-Poincare group, which are half of a de Sitter, anti-de Sitter or Minkowski space, and we identify what distinguishes them. Moreover, we find a new momentum space with the geometry of a light cone, associated to a $kappa$-deformation of the Carroll group.
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in thi s case by Mellin transforms. We briefly discuss the role of transformations and observers.
The static spherically symmetric traversable wormholes are analysed in the Einstein- Cartan theory of gravitation. In particular, we computed the torsion tensor for matter fields with different spin S = 0; 1/2; 1; 3/2. Interestingly, only for certain values of the spin the torsion contribution to Einstein-Cartan field equation allows one to satisfy both faring-out condition and Null Energy Condition. In this scenario traversable wormholes can be produced by using usual (non-exotic) spinning matter.
In this paper, we develop an iterative approach to span the whole set of exotic matter models able to drive a traversable wormhole. The method, based on a Taylor expansion of metric and stress-energy tensor components in a neighbourhood of the wormho le throat, reduces the Einstein equations to an infinite set of algebraic conditions, which can be satisfied order by order. The approach easily allows the implementation of further conditions linking the stress-energy tensor components among each other, like symmetry conditions or equations of state. The method is then applied to some relevant examples of exotic matter characterised by a constant energy density and that also show an isotropic behaviour in the stress-energy tensor or obeying to a quintessence-like equation of state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا