ﻻ يوجد ملخص باللغة العربية
A useful concept in the development of physical models on the $kappa$-Minkowski noncommutative spacetime is that of a curved momentum space. This structure is not unique: several inequivalent momentum space geometries have been identified. Some are associated to a different assumption regarding the signature of spacetime (i.e. Lorentzian vs. Euclidean), but there are inequivalent momentum spaces that can be associated to the same signature and even the same group of symmetries. Moreover, in the literature there are two approaches to the definition of these momentum spaces, one based on the right- (or left-)invariant metrics on the Lie group generated by the $kappa$-Minkowski algebra. The other is based on the construction of $5$-dimensional matrix representation of the $kappa$-Minkowski coordinate algebra. Neither approach leads to a unique construction. Here, we find the relation between these two approaches and introduce a unified approach, capable of describing all momentum spaces, and identify the corresponding quantum group of spacetime symmetries. We reproduce known results and get a few new ones. In particular, we describe the three momentum spaces associated to the $kappa$-Poincare group, which are half of a de Sitter, anti-de Sitter or Minkowski space, and we identify what distinguishes them. Moreover, we find a new momentum space with the geometry of a light cone, associated to a $kappa$-deformation of the Carroll group.
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in thi
We study the propagation of quantum fields on $kappa$-Minkowsi spacetime. Starting from the non-commutative partition function for a free field written in momentum space we derive the Feynman propagator and analyze the non-trivial singularity structu
Two one-parameter families of twists providing kappa-Minkowski * -product deformed spacetime are considered: Abelian and Jordanian. We compare the derivation of quantum Minkowski space from two perspectives. The first one is the Hopf module algebra p
We describe $kappa$-Minkowski space and its relation to group theory. The group theoretical picture makes it possible to analyze the symmetries of this space. As an application of this analysis we analyze in detail free field theory on $kappa$-Minkow
There is a growing evidence that due to quantum gravity effects the effective spacetime dimensionality might change in the UV. In this letter we investigate this hypothesis by using quantum fields to derive the UV behaviour of the static, two point s